Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanoparticles have gained attention as drug delivery vehicles for cancer treatment, but often struggle with poor tumor accumulation and penetration. Single external magnets can enhance magnetic nanoparticle delivery but are limited to superficial tumors due to the rapid decline in the magnetic field strength with distance. We previously showed that a 2-magnet device could extend targeting to greater tissue depths. Here, we improve on this approach by constructing an 8-magnet device arranged in an annular Halbach array, which facilitates radial outward movement of magnetic nanoparticles from the bore's center. Using chlorin e6-coated magnetic nanoclusters (Ce6 clusters) with densely packed cobalt-doped superparamagnetic iron oxide nanoparticles, we demonstrated nearly a 7-fold improvement in nanoparticle movement through a porous matrix compared to the 2-magnet approach. This resulted in enhanced magnetic resonance contrast, accumulation, and penetration of Ce6 clusters into 4T1 triple-negative breast tumors in mice, leading to improved photodynamic therapy and highlighting the potential therapeutic application of the 8-magnet device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c16600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!