A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells. | LitMetric

Understanding Folding of bFGF and Potential Cellular Protective Mechanisms of Neural Cells.

Biochemistry

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.

Published: January 2025

AI Article Synopsis

  • Traumatic brain injury (TBI) affects many individuals, especially veterans and athletes, and has serious, long-term consequences for brain health.
  • Current research explores the role of fibroblast growth factor (FGF) proteins in protecting cells, highlighting knowledge gaps regarding how heparin and similar molecules activate bFGF and how mutations affect its stability.
  • Using temperature replica exchange, the study identified a new binding site on bFGF and revealed that various sugars affect bFGF interactions similarly to heparin, underscoring the need for a deeper understanding of TBI mechanisms for better treatment development.

Article Abstract

Traumatic brain injury (TBI) is a serious health condition that affects an increasing number of people, especially veterans and athletes. TBI causes serious consequences because of its long-lasting impact on the brain and its alarming frequency of occurrence. Although the brain has some natural protective mechanisms, the processes that trigger them are poorly understood. Fibroblast growth factor (FGF) proteins interact with receptor proteins to protect cells. Gaps in the literature include how basic-FGF (bFGF) is activated by heparin, can heparin-like molecules induce neural protection, and the effect of allosteric binding on bFGF activity. To fill the gap in our understanding, we applied temperature replica exchange to study the influence of heparin binding to bFGF and how mutations in bFGF influence stability. A new favorable binding site was identified by comparing free energies computed from the potential of mean force (PMF). Although the varied sugars studied resulted in different interactions with bFGF compared to heparin, they each produced structural effects similar to those of bFGF that likely facilitate receptor binding and signaling. Our results also demonstrate how point mutations can trigger the same conformational change that is believed to promote favorable interactions with the receptor. A deeper atomic-level understanding of how chemicals are released during TBI is needed to improve the development of new treatments for TBI and could contribute to a better understanding of other diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.4c00297DOI Listing

Publication Analysis

Top Keywords

protective mechanisms
8
tbi serious
8
binding bfgf
8
bfgf
7
understanding
4
understanding folding
4
folding bfgf
4
bfgf potential
4
potential cellular
4
cellular protective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!