Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules. By modulating the excitation power, we have observed for the first time the Stark effect associated with Raman-forbidden transitions, revealing a strong electric-field gradient and optomagnetic effect within the plasmon cavity. Furthermore, by manipulating the plasmon tip to minimize the nanogap, we demonstrate that splitting occurs in the dipole Raman spectrum, indicating that the plasmon cavity enters a strong coupling regime. This fiber vector light-field-based TERS approach offers a unique opportunity to investigate weak matter responses with potential applications in single-molecule spectroscopy, sensors, and catalysis monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c04379 | DOI Listing |
Acta Biomater
January 2025
School of Life Sciences, Keele University, Staffordshire, UK. Electronic address:
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.
View Article and Find Full Text PDFAndrology
January 2025
Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: Although some studies have revealed the close relationship between leptin and premature ejaculation in clinical practice, whether and how leptin participates in the regulation of ejaculatory behaviors are still unknown.
Objective: To explore the role of leptin on ejaculatory behaviors and its underlying mechanism.
Materials And Methods: Copulation behavior tests were performed after acute and chronic leptin administration at peripheral and central levels.
Sci Rep
January 2025
Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2025
University of Arizona, College of Biomedical Engineering, Tucson, Arizona, United States.
Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!