The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration. Despite their intrinsic stiffness, they exhibit characteristic bending and buckling in cells due to nonthermal forces acting on them. Interactions between cytoskeletal filaments have been found but are complex and diverse with respect to their effect on the mechanical behavior of the filaments and the architecture of networks. We systematically study how actin and vimentin IFs influence the network structure and local bending of microtubules by analyzing fluorescence microscopy images of mouse fibroblasts on protein micropatterns. Our automated analysis averages over large amounts of data to mitigate the effect of the considerable natural variance in biological cell data. We find that the radial orientation of microtubules in circular cells is robust and is established independently of vimentin and actin networks. Observing the local curvature of microtubules, we find highly similar average bending of microtubules in the entire cell regardless of the cytoskeletal surrounding. Small systematic differences cannot be attributed directly to vimentin and actin densities. Our results suggest that, on average, microtubules in unpolarized mouse fibroblasts are unexpectedly independent of the rest of the cytoskeleton in their global network structure and their local curvature.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm01127aDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697242PMC

Publication Analysis

Top Keywords

local curvature
12
mouse fibroblasts
12
vimentin actin
12
microtubules
8
curvature microtubules
8
network structure
8
structure local
8
bending microtubules
8
actin
5
global alignment
4

Similar Publications

Local corner smoothing based on deep learning for CNC machine tools.

Sci Rep

January 2025

College of Intelligent systems Science and Engineering, Harbin Engineering University, Harbin, 150006, China.

Most of toolpaths for machining is composed of series of short linear segments (G01 command), which limits the feedrate and machining quality. To generate a smooth machining path, a new optimization strategy is proposed to optimize the toolpath at the curvature level. First, the three essential components of optimization are introduced, and the local corner smoothness is converted into an optimization problem.

View Article and Find Full Text PDF

The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.

View Article and Find Full Text PDF

Ultra-Flexible High-Linearity Silicon Nanomembrane Synaptic Transistor Array.

Adv Mater

January 2025

School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China.

The increasing demand for mobile artificial intelligence applications has elevated edge computing to a prominent research area. Silicon materials, renowned for their excellent electrical properties, are extensively utilized in traditional electronic devices. However, the development of silicon materials for flexible neuromorphic computing devices encounters great challenges.

View Article and Find Full Text PDF

Coronary anatomy governs local haemodynamics associated with atherosclerotic development, progression and ultimately adverse clinical outcomes. However, lack of large sample size studies and methods to link adverse haemodynamics to anatomical information has hindered meaningful insights to date. The Left Main coronary bifurcations of 127 patients with suspected coronary artery disease in the absence of significant stenosis were segmented from CTCA images before computing the local haemodynamics.

View Article and Find Full Text PDF

Perivascular Chorioretinal Atrophy: an Unusual Feature in Pathologic Myopia Eyes.

Am J Ophthalmol

December 2024

Department of Ophthalmology, New Civil Hospital, Strasbourg University Hospital, FMTS, Strasbourg, France. Electronic address:

Purpose: To describe a new feature in pathologic myopia: perivascular patchy chorioretinal atrophy (PVCA) DESIGN: Cross-sectional study METHODS: 604 eyes of 312 highly myopic patients followed at Strasbourg University Hospitals were reviewed for the presence of PVCA lesions. Demographic, clinical, and paraclinical data (ultra-widefield retinography, optical coherence tomography (OCT), fluorescein and indocyanine green angiography images) were analyzed. Controls were matched for age, sex, and axial length (AL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!