A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS. The refrigeration module adopts a thermoelectric cooler (TEC), and a heating wire directly heats the adsorption tube to reduce the heat capacity. The miniaturization and low-power design make this module integrable into portable GC-MS devices. This module can reduce the temperature to around 0 °C within ten minutes for sample enrichment, and the heating system can increase the temperature to 260 °C within 20 seconds to ensure rapid desorption and injection of samples. Due to the miniaturization design, the total weight of the portable GC-MS is 21.7 kg, and the volume is 48 cm × 38 cm × 17 cm. Within merely 10 minutes, it completely separated and detected 65 VOCs in the TO-15 standard substance, with a detection limit down to 0.12 μg L for toluene. The detection performance for low-boiling substances could be enhanced by up to 17 times compared to ambient temperature adsorption thermal desorption, such as 1,3-butadiene. Moreover, the results demonstrated long-term stability (RSD < 10% for 98% of the substances, with recovery rates from 91.66% to 109.12%). This study provides a feasible strategy for the rapid and reliable detection of VOCs in the air, holding great potential in the field of environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4an01484gDOI Listing

Publication Analysis

Top Keywords

adsorption thermal
12
thermal desorption
12
portable gc-ms
12
portable gas
8
gas chromatograph-mass
8
chromatograph-mass spectrometer
8
low-temperature adsorption
8
detection volatile
8
volatile organic
8
organic compounds
8

Similar Publications

Benzotrithiophene-based covalent organic frameworks for sensitive fluorescence detection and efficient removal of Ag from drinking water.

Talanta

December 2024

Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:

The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.

View Article and Find Full Text PDF

Methane Adsorption in Heterogeneous Potential Wells of Coal: Characterization Model and Applications.

Langmuir

January 2025

Key Laboratory of Insitu Property improving Mining of Ministry of Education, Taiyuan University of Technology, No,18 Xinkuangyuan Road, Wanbailin District, Taiyuan, Shanxi 030024, P. R. China.

In terms of the phenomenon of nonuniformity adsorption energy between methane and a natural heterogeneous coal surface, a heterogeneous potential well model is established in this study based on adsorption science and molecular dynamics theories. This model describes the methane adsorption positions in coal pores as a three-dimensional space composed of adsorption equipotential surfaces with varying depths of potential well, which emphasizes the heterogeneous distribution of methane adsorption potential well depths in coal and accurately describes the spatial distribution and energy states of methane molecules during methane adsorption and desorption in naturally heterogeneous coal. By taking the residual sum of squares (RSS) and Pearson correlation coefficient as indicators, the fitting accuracies of the Langmuir model and the heterogeneous potential well model for isothermal adsorption and desorption curves are compared so that the superiority of the heterogeneous potential well model in describing the adsorption and desorption of methane in natural coal is confirmed.

View Article and Find Full Text PDF

A portable gas chromatograph-mass spectrometer (GC-MS) is an effective instrument for rapid on-site detection of volatile organic compounds (VOCs). Current instruments typically adsorb samples at ambient temperature, challenging the detection of low-boiling VOCs. In this study, a low-temperature adsorption thermal desorption method is proposed for sample enrichment in a portable GC-MS.

View Article and Find Full Text PDF

Banana peels-derived shape-regulated nanocellulose for effective adsorption of Nile blue A dye.

Int J Biol Macromol

December 2024

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Industrial wastes, including dyes and other chemicals, are significant sources of water pollution. The adsorption process is often explored in water purification. However, developing low-cost, sustainable adsorbents with good dye removal capacity remains challenging.

View Article and Find Full Text PDF

The photocatalytic efficiency of TiO has been opposed by the fast recombination speed of photogenerated carriers. Here, g-CN -modified sulfate-built-in TiO quantum dots (ST-QDs) were successfully created using a simple ultrasonication-thermal procedure. g-CN-enrapped ST QDs with a 10 nm size were revealed by the characterization results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!