Melanoma, an aggressive skin cancer originating from melanocytes, presents substantial challenges due to its high metastatic potential and resistance to conventional therapies. Hydrogels, 3D networks of hydrophilic polymers with high water-retention capacities, offer significant promise for controlled drug delivery applications. In this study, we report the synthesis and characterization of hydrogelators based on the triazine molecular scaffold, which self-assemble into fibrous networks conducive to hydrogel formation. Rheological analysis confirmed their hydrogelation properties, while microscopic techniques, including FE-SEM and FEG-TEM, provided insights into their morphological networks. The drug delivery capability of these hydrogelators was evaluated using doxorubicin, a widely employed anticancer agent, demonstrating enhanced biocompatibility and reduced side effects compared to free doxorubicin. Additionally, the hydrogelators exhibited inhibitory activity against phosphoinositide 3-kinase (PI3K), a key enzyme frequently mutated in cancer and also involved in melanoma progression. The dual functionality of this delivery system─controlled drug release and PI3K inhibition─highlights the potential of triazine-based hydrogelators as innovative therapeutic platforms for melanoma treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.4c01291 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFNeurotherapeutics
January 2025
Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.
View Article and Find Full Text PDFInt J Pharm
January 2025
Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China. Electronic address:
Kisspeptins function as endogenous ligands for the G protein-coupled receptor GPR54. While the primary role of the Kisspeptin/GPR54 signaling pathway pertains to reproduction, several studies have shown that GPR54 is highly expressed in breast cancer, and we further confirmed this result that GPR54 expression is significantly upregulated in breast cancer cells. Based on this finding, we developed a liposomal drug delivery system utilizing the Kisspeptin/GPR54 system to treat breast cancer after confirming the safety of Kp-10-228.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Sri Krishnadevaraya University, Ananthapur 515003, India. Electronic address:
Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!