Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Published: March 2025

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis. It is also involved in pathological processes such as cardiomyocyte apoptosis, hypertrophy and fibrosis in CVD. The selective mitochondrial calcium uniporter complex (MCU complex) located in the inner membrane is essential for mitochondrial Ca uptake. Therefore, the MCU complex is a potential therapeutic target for CVD. In this review, recent research progress on the pathophysiological mechanisms and therapeutic potential of the MCU complex in various CVDs was summarized, including myocardial ischemia‑reperfusion injury, pulmonary arterial hypertension, other peripheral vascular diseases, myocardial remodeling and arrhythmias. This review contributes to a deeper understanding of these mechanisms at the molecular level and highlights potential intervention targets for CVD treatment in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2024.5481DOI Listing

Publication Analysis

Top Keywords

mcu complex
12
mitochondrial calcium
8
calcium uniporter
8
uniporter complex
8
therapeutic target
8
inner membrane
8
complex
5
cvd
5
mitochondrial
4
complex emerging
4

Similar Publications

Mitochondrial calcium uniporter complex: An emerging therapeutic target for cardiovascular diseases (Review).

Int J Mol Med

March 2025

Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China.

Cardiovascular disease (CVD) is currently a major factor affecting human physical and mental health. In recent years, the relationship between intracellular Ca and CVD has been extensively studied. Ca movement across the mitochondrial inner membrane plays a vital role as an intracellular messenger, regulating energy metabolism and calcium homeostasis.

View Article and Find Full Text PDF

Mitochondrial calcium uniporter complex controls T-cell-mediated immune responses.

EMBO Rep

December 2024

Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Centre, Georg-August-University, Göttingen, Germany.

Article Synopsis
  • - T-cell receptor (TCR) activation leads to increased calcium (Ca) uptake in mitochondria of human CD4 T-cells, which is critical for T-cell activation and energy production.
  • - Effector T-cells show higher levels of Ca and enhanced metabolic activity compared to naive T-cells, influenced by the mitochondrial calcium uniporter (MCU) complex.
  • - Reducing MCUa function decreases Ca uptake, mitochondrial respiration, and important T-cell activities like migration and cytokine secretion, suggesting that MCU inhibition could help manage autoimmune diseases.
View Article and Find Full Text PDF

Eccentric contractions (ECC) are accompanied by the accumulation of intracellular calcium ions ([Ca]) and induce skeletal muscle damage. Suppressed muscle damage in repeated bouts of ECC is well characterized; however, whether it is mediated by altered Ca profiles remains unknown. We tested the hypothesis that repeated ECC suppresses Ca accumulation via adaptations in Ca regulation.

View Article and Find Full Text PDF

Mitochondria regulate several physiological functions through mitochondrial Ca2+ dynamics. However, role of mitochondrial Ca2+ signaling in melanosome biology remains unknown. Here, we show that pigmentation requires mitochondrial Ca2+ uptake.

View Article and Find Full Text PDF

Autosomal recessive spinocerebellar ataxias (SCARs) are one of the most common neurodegenerative diseases characterized by progressive ataxia. Although SCARs are known to be caused by mutations in multiple genes, there are still many cases that go undiagnosed or are misdiagnosed. In this study, we presented a SCAR patient, and identified a probable novel pathogenic mutation (c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!