The present study investigated the mechanisms by which aquaporin 1 (AQP1) influences microglial polarization and neuroinflammatory processes in traumatic brain injury (TBI). A model of TBI was generated in AQP1‑knockout mice to assess the impact of AQP1 deletion on inflammatory cytokine release, neuronal damage and cognitive function. Immunofluorescence, reverse transcription‑quantitative PCR, western blotting and enzyme‑linked immunosorbent assay were employed to evaluate pro‑inflammatory and anti‑inflammatory markers. Behavioral assessments, including the Barnes maze, were performed to determine cognitive outcomes. Moreover, AQP1 knockout inhibited the activation of inflammation‑related signaling pathways, including nuclear factor‑κB, Janus kinase/signal transducer and activator of transcription, phosphoinositide 3‑kinase/protein kinase B and extracellular signal‑regulated kinase/mitogen‑activated protein kinase pathways. Further studies indicated that the AQP1 inhibitor m‑phenylenediacrylic acid demonstrated significant neuroprotective effects in a mouse model of TBI. These findings suggested that AQP1 may be essential in post‑TBI inflammatory responses and neuronal injury, establishing a theoretical foundation for future therapies aimed at AQP1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2025.5482 | DOI Listing |
BMC Neurosci
January 2025
Laboratory of Veterinary Internal Medicine, Department of Clinical Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
Microglia/macrophages participate in the development of and recovery from experimental autoimmune encephalomyelitis (EAE), and the macrophage M1 (pro-inflammatory)/M2 (anti-inflammatory) phase transition is involved in EAE disease progression. We evaluated the efficacy of crisdesalazine (a novel microsomal prostaglandin E2 synthase-1 inhibitor) in an EAE model, including its immune-regulating potency in lipopolysaccharide-stimulated macrophages, and its neuroprotective effects in a macrophage-neuronal co-culture system. Crisdesalazine significantly alleviated clinical symptoms, inhibited inflammatory cell infiltration and demyelination in the spinal cord, and altered the phase of microglial/macrophage and regulatory T cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom.
Background: Neuroinflammation is a key component of Alzheimer's Disease (AD) pathology. Triggering receptor expressed on myeloid cells 2 (TREM2) is crucial to microglial involvement in AD, mediating trem2-dependent activation and Disease-Associated Microglia (DAM) polarization. However, GWAS revealed that loss-of-function mutations of its encoding gene are an important risk factor for AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Imperial College London, London, United Kingdom.
Background: Microglial reactivity and neuroinflammation are crucial pathological processes in Alzheimer's Disease (AD). Several attempts to develop a treatment by supressing the immune response in AD have been made, yet these yielded very limited results. Recent studies suggest contrasting effects of microglial reactivity, indicating a biphasic response with both beneficial and deleterious effects at distinct stages of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
LC Campbell Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, ON, Canada.
Background: The endocannabinoid system has demonstrated roles in Alzheimer's Disease (AD), such as modulation of inflammation. Fatty Acid Amide Hydrolase (FAAH) is the enzyme responsible for the rapid inactivation of the endocannabinoid anandamide into arachidonic acid and ethanolamine. In doing so, FAAH modulates the concentration of anandamide and influences neurobehavioral functions and physiological conditions such as nociception and inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!