Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Published: January 2025

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform. Carboxymethyl dextran (20 kDa) was spiked into Pluronic thermal gel along with fluorescent nanoparticles (200 nm diameter) and loaded into single-channel microfluidic devices. Upon voltage application, the soluble sugar enriched into a concentrated band that induced motion of the insoluble particles as it passed. Bead displacement was tracked over time to produce electropherograms where peak areas were proportional to analyte concentrations. Key studies herein established the range of acceptable operating conditions (e.g., gel concentration, temperature) to characterize how the temperature-dependent rigidity of thermal gel influenced the analysis. Data processing strategies were then evaluated to identify conditions (e.g., exposure intervals, particle averaging, motion directionality) to maximize sensitivity. The quantitative response of the method was evaluated over a broad concentration range (0.5-5000 nM) where detection limits were found to be 520 pM for the 20 kDa sugar, providing a 10-fold superior mass LOD than a gold standard UV-vis absorbance method. Studies into the detection mechanism found that sensitivity was dependent on the molecular weight of the sugar as larger sugars produced greater responses. Collectively, these studies established best practices for integrating particle sensing into thermal gel separations for label-free polysaccharide quantitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02042DOI Listing

Publication Analysis

Top Keywords

thermal gel
16
integrating particle
8
particle motion
8
motion tracking
8
multiplexing capacity
8
studies established
8
gel
5
motion
4
thermal
4
tracking thermal
4

Similar Publications

Composite gels are a type of soft matter, which contains a continuous three-dimensional crosslinked network and has been embedded with non-gel materials. Compared to pure gels, composite gels show high flexibility and tunability in properties and hence have attracted extensive interest in applications ranging from cancer therapy to tissue engineering. In this study, we incorporated triethylenetetramine (TETA)-functionalized cobalt ferrite nanoparticles (ANPs) into a hydrogel consisting of sodium alginate (SA) and methyl cellulose (MC), and examined the resulting composite gels for controlled drug release.

View Article and Find Full Text PDF

Integrating Particle Motion Tracking into Thermal Gel Electrophoresis for Label-Free Sugar Sensing.

ACS Sens

January 2025

Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.

Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.

View Article and Find Full Text PDF

This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.

View Article and Find Full Text PDF

The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators.

View Article and Find Full Text PDF

Fabrication, characteristics and properties of α-lactalbumin fibril-derived hydrogels: Effects of metal ions type.

Food Chem

December 2024

Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. Electronic address:

The effects of different valence metal ions on the formation of hydrogels with α-lactalbumin fibrils (ALAF) were comprehensively examined in this study. The properties of hydrogel were generally characterized with water holding capacity (WHC), rheology, texture, DSC and ICP tests. Except FeCl, it was shown that KCl, NaCl, CaCl, MgCl, NiCl, and AlCl at 90 mM could induce the formation of hydrogels with ALAF (40 mg/mL), and hydrogels formed by high valence metal salts had more good properties (viscoelasticity, WHC, and thermal stability), and the amounts of metal ions released from hydrogels with high valence salts after immersion in deionized water for 90 min were all below 10 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!