Virus Evolution in Prolonged Infections of Immunocompromised Individuals.

Clin Chem

Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.

Published: January 2025

Background: Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands.

Content: In this review, we provide an overview of populations at risk for prolonged viral shedding, clinical manifestations of persistent viral infection, and methods of assessing viral evolution. We then review the literature on viral evolution in immunocompromised patients across an array of RNA viruses, including SARS-CoV-2, norovirus, influenza, and poliovirus, and discuss the global implications of persistent viral infections in these hosts.

Summary: There is significant evidence for accelerated viral evolution and accumulation of mutations in antigenic sites in immunocompromised hosts across many viral pathogens. However, the implications of this phenomenon are not clear; while there are rare reports of transmission of these variants, they have not clearly been shown to predict disease outbreaks or have significant global relevance. Emerging methods including wastewater monitoring may provide a more sophisticated understanding of the impact of variants that evolve in immunocompromised hosts on the wider host population.

Download full-text PDF

Source
http://dx.doi.org/10.1093/clinchem/hvae150DOI Listing

Publication Analysis

Top Keywords

immunocompromised hosts
12
viral evolution
12
viral
8
viral shedding
8
persistent viral
8
immunocompromised
6
virus evolution
4
evolution prolonged
4
prolonged infections
4
infections immunocompromised
4

Similar Publications

Virus Evolution in Prolonged Infections of Immunocompromised Individuals.

Clin Chem

January 2025

Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.

Background: Many viruses can cause persistent infection and/or viral shedding in immunocompromised hosts. This is a well-described occurrence not only with SARS-CoV-2 but for many other viruses as well. Understanding how viruses evolve and mutate in these patients and the global impact of this phenomenon is critical as the immunocompromised population expands.

View Article and Find Full Text PDF

Overexpression of the myeloid Src-family kinases Fgr and Hck has been linked to the development of acute myeloid leukemia (AML). Here we characterized the contribution of active forms of these kinases to AML cell cytokine dependence, inhibitor sensitivity, and AML cell engraftment in vivo. The human TF-1 erythroleukemia cell line was used as a model system as it does not express endogenous Hck or Fgr.

View Article and Find Full Text PDF

Studies of acute and post-acute COVID-19, including their biology, prevention, and treatment, were presented at the 2024 Conference on Retroviruses and Opportunistic Infections. Numerous studies reported on the impact of hybrid immunity (ie, from a combination of prior infection and vaccination) on the natural history, pathogenesis, and outcomes of infection with modern SARS-CoV-2 variants. Several studies demonstrated the continued benefit of SARS-CoV-2 vaccination and the effect of treatment, particularly in the setting of severe disease.

View Article and Find Full Text PDF

Ciliates often form symbiotic associations with other microorganisms, both prokaryotic and eukaryotic. We are now starting to rediscover the symbiotic systems recorded before molecular analysis became available. Here, we provide a morphological and molecular characterization of a symbiotic association between the ciliate Paramecium tritobursaria and the yeast Rhodotorula mucilaginosa (syn.

View Article and Find Full Text PDF

Unlabelled: Due to the importance of post-translational modification (PTM) in cellular function, viruses have evolved to both take advantage of and be susceptible to such modification. Adenovirus encodes a multifunctional protein called protein VII, which is packaged with the viral genome in the core of virions and disrupts host chromatin during infection. Protein VII has several PTMs whose addition contributes to the subnuclear localization of protein VII.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!