Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR). While IPDA is more sensitive due to amplifying short fragments, it may overestimate intact fractions by relying only on quantification of 2 proviral regions. Q4PCR samples 4 proviral regions, yet is sequencing-based, favoring amplification of shorter, hence non-intact, proviral sequences.
Methods: Leveraging digital PCR (dPCR) advancements, we developed the "Rainbow" 5-plex proviral HIV-1 DNA assay. This first-in-its-kind assay was evaluated using standard materials and samples from 83 people living with HIV-1, enabling simultaneous quantification of both total and intact HIV-1 DNA levels. HIV proviral unique molecular identifier (UMI)-mediated long-read sequencing (HIV-PULSE) was used to validate the specificity of the Rainbow HIV-1 DNA assay.
Results: The Rainbow assay proved equally sensitive but more specific than IPDA and is not subjected to bias against full-length proviruses, enabling high-throughput quantification of total and intact reservoir size. The near full-length sequences allowed validation of the Rainbow specificity and the design of personalized Rainbow primer/probe sets, which enabled the detection of intact HIV-1 DNA.
Conclusions: This innovation offers potential for targeted evaluation and monitoring of potential rebound-competent reservoirs, contributing to HIV-1 management and cure strategies. ClinicalTrials.gov Registration Numbers: NCT04553081, NCT04305665.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/clinchem/hvae192 | DOI Listing |
Clin Chem
January 2025
Department of Internal Medicine and Pediatrics, HIV Cure Research Center, Ghent University Hospital, Ghent University Ghent, Belgium.
Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR).
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
December 2024
Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA.
Despite advancements in antiretroviral therapy (ART) that reduces the viral load to undetectable levels and improve CD4 T cell counts, viral eradication has not been achieved due to HIV-1 persistence in resting CD4 T-cells. We, therefore, characterized the gene, which is essential for HIV-1 replication and pathogenesis, from 20 virologically controlled aging individuals with HIV (HIV) on long-term ART and improved CD4 T-cell counts, with a particular focus on older individuals. Peripheral blood mononuclear cell genomic DNA from HIV were used to amplify gene by polymerase chain reaction followed by nucleotide sequencing and analysis.
View Article and Find Full Text PDFJ Virol
December 2024
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Previous studies have shown that the majority of long-lived cells harboring persistent HIV-1 proviral genomes originates from viruses circulating in the year prior to antiretroviral therapy (ART) initiation, but a smaller proportion originates from viruses circulating much earlier in untreated infection. These observations suggest that discrete biological factors influence the entry and persistence of viruses into the persistent proviral pool, and there may be periods earlier in untreated infection with increased seeding. Therefore, we examined the timing of formation of the long-lived pool of infected cells that persists during ART in seven women (after a median of 5.
View Article and Find Full Text PDFAIDS Res Hum Retroviruses
December 2024
Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
During male-to-female transmission, HIV-1 must cross the mucosal epithelium of the female reproductive tract to gain access to underlying target cells. Previously, we demonstrated that HIV-1 can penetrate intact columnar and squamous genital epithelia in both and systems. We found that the virus enters the squamous epithelium via a diffusion-based mechanism, but the mechanism of entry in columnar epithelium remained elusive.
View Article and Find Full Text PDFFront Immunol
December 2024
Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands.
Introduction: The main obstacle to achieving an HIV-1 cure is the proviral reservoir. To promote equity in HIV cure strategies, it is crucial to study the viral reservoir of the predominant HIV-1 subtype C in both women and men. Therefore, we investigated the dynamics of the (intact) viral reservoir in relation to plasma viral load (VL), CD4 T cell count, and immune activation before and during 96 weeks of successful antiretroviral therapy (ART).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!