Pharmacogenomics (PGx) is focused on the relationship between an individual's genetic makeup and their response to medications, with the overarching aim of guiding prescribing decisions to improve drug efficacy and reduce adverse events. The PGx and genomic medicine communities have worked independently for over 2 decades, developing separate standards and terminology, making implementation of PGx across all areas of genomic medicine difficult. To address this issue, the Clinical Genome Resource (ClinGen) Pharmacogenomics Working Group (PGxWG) was established by the National Institutes of Health (NIH)-funded ClinGen to initially create frameworks for evaluating gene-drug response clinical validity and actionability aligned with the ClinGen frameworks for evaluating monogenic gene-disease relationships, and a framework for classifying germline PGx variants similar to the American College of Medical Genetics (ACMG) and Association of Molecular Pathology (AMP) system for interpretation of disease-causing variants. These frameworks will leverage decades of work from well-established PGx resources facilitating buy-in among PGx stakeholders. In this report, we describe the background and major activities of the ClinGen PGxWG, and how this initiative will facilitate the critical inclusion of PGx into the larger context of genomic medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1093/clinchem/hvae181DOI Listing

Publication Analysis

Top Keywords

genomic medicine
16
clingen pharmacogenomics
8
pharmacogenomics working
8
working group
8
group pgxwg
8
frameworks evaluating
8
pgx
7
clingen
5
integrating pharmacogenomics
4
pharmacogenomics broader
4

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

The Mycobacterium avium complex (MAC) is a group of closely related nontuberculous mycobacteria that can cause various diseases in humans. In this study, genome sequencing, comprehensive genomic analysis, and antimicrobial susceptibility testing of 66 MAC clinical isolates from King Chulalongkorn Memorial Hospital, Bangkok, Thailand were carried out. Whole-genome average nucleotide identity (ANI) revealed the MAC species distribution, comprising 54 (81.

View Article and Find Full Text PDF

Vibrio vulnificus is a significant zoonotic pathogen that causes severe vibriosis in humans and fish. The lack of a national annual surveillance program in China has hindered understanding of its epidemiological characteristics and genetic diversity. This study characterized 150 V.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Experiencing a traumatic event may lead to Posttraumatic Stress Disorder (PTSD), including symptoms such as flashbacks and hyperarousal. Individuals suffering from PTSD are at increased risk of cardiovascular disease (CVD), but it is unclear why. This study assesses shared genetic liability and potential causal pathways between PTSD and CVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!