Background: Candida auris is an emerging multidrug-resistant pathogen. Interpretation of susceptibility testing can be difficult since minimum inhibitory concentration (MIC) breakpoints have not been fully established.
Methods: All C. auris isolates from unique patients identified at a large urban hospital between 2020 and 2024 (n = 66) underwent whole-genome sequencing (WGS). Genomic DNA was extracted from pure culture isolates and underwent PCR-free library preparation. WGS was performed on an Illumina platform (NextSeq2000) with an average coverage of 50×. Genomic analysis was conducted via an adapted GATK-based pipeline using the B11205 strain as the reference genome based on the CDC (MycoSNP) protocol. All isolates underwent FKS1 gene Sanger sequencing for confirmation of WGS results. Genotypic results were correlated with antifungal susceptibility testing.
Results: All clinical isolates were part of Clade I and carried azole resistance mutations in ERG11, TAC1b, and CDR1, consistent with 100% phenotypic fluconazole resistance. Across all isolates, 5 distinct missense variants in FKS1 were identified: one case with p.Ser639Tyr, one case with both a p.Arg1354Ser and a p.Asp642His, 7 cases with p.Met690Ile, and 9 cases with p.Val1818Ile. Isolates with known echinocandin resistance conferring mutations p.Ser639Tyr and p.Arg1354Ser were resistant to micafungin and anidulafungin. Two isolates with Met690Ile were resistant to caspofungin alone.
Conclusions: With potential resistance to all 3 major antifungal classes of drugs, C. auris is an emerging public health threat. Early detection of echinocandin resistance by molecular methods could impact treatment course to include novel antifungal agents. Further study of the FKS1 Met690Ile variant is warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/clinchem/hvae185 | DOI Listing |
Expert Rev Anti Infect Ther
January 2025
Pathogenic Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa.
Introduction: There is a rise in antifungal resistance as well as the emergence of multidrug resistant fungal pathogens worldwide, including in Africa.
Method: This systematic review summarized the published data on the mechanisms and epidemiology of antifungal resistance in species in Africa between 2000 and early 2024.
Result: Seventeen reports from seven African countries were analyzed but due to the paucity of data, the prevalence of antifungal resistant isolates in Africa could not be estimated.
PLoS One
January 2025
General Directorate of Infection Prevention & Control, Ministry of Health-Saudi Arabia, Riyadh, Saudi Arabia.
Background: Candida auris (C. auris) is an emerging fungus pathogen associated with nosocomial infections that is seen as a serious global health issue.
Aim: To describe the epidemiology and features of hospital-acquired Candida auris outbreaks in the Ministry of Health hospitals (MOH).
Clin Chem
January 2025
Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States.
Background: Candida auris is an emerging multidrug-resistant pathogen. Interpretation of susceptibility testing can be difficult since minimum inhibitory concentration (MIC) breakpoints have not been fully established.
Methods: All C.
Front Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFMycopathologia
December 2024
Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98., Debrecen, 4032, Hungary.
The sudden emergence of multidrug- and pan-resistant Candida auris isolates, combined with limited treatment options, poses significant global challenges in healthcare settings. Combination based therapies are promising alternative options to overcome C. auris related infections, where echinocandin and isavuconazole (ISA) combinations may be an interesting and promising approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!