Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis.

J Am Chem Soc

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Published: January 2025

Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions. The obtained AH-COFs exhibit exceptional thermal and chemical stability, maintaining high crystallinity and microporosity even under harsh conditions. This method shows the versatility of metalation through subcomponent assembly with a wide range of metal centers, and the delicate control of coordination geometry through isoreticular functionalization for fine-tuning of the pore environments and metal catalytic activity. The metalated AH-COFs demonstrate excellent catalytic performance: AH-COF-2-Zn achieves high efficiency in CO cycloaddition, while AH-COF-1-Cu-PSM achieves near-quantitative conversion in copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions, with both catalysts retaining their activity over multiple cycles. This study offers an efficient and versatile method for the rapid crystallization of designable, stable, and functional COFs, heading to practical applications prioritized on efficiency, scalability, and sustainability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c13982DOI Listing

Publication Analysis

Top Keywords

rapid crystallization
12
crystallization versatile
8
versatile metalation
8
metalation acetylhydrazone-linked
8
covalent organic
8
organic frameworks
8
acetylhydrazone-linked covalent
4
frameworks heterogenous
4
heterogenous catalysis
4
catalysis covalent
4

Similar Publications

Hierarchically aligned heterogeneous core-sheath hydrogels.

Nat Commun

January 2025

Institute of Innovative Materials, Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China.

Natural materials with highly oriented heterogeneous structures are often lightweight but strong, stiff but tough and durable. Such an integration of diverse incompatible mechanical properties is highly desired for man-made materials, especially weak hydrogels which are lack of high-precision structural design. Herein, we demonstrate the fabrication of hierarchically aligned heterogeneous hydrogels consisting of a compactly crosslinked sheath and an aligned porous core with alignments of nanofibrils at multi-scales by a sequential self-assembly assisted salting out method.

View Article and Find Full Text PDF

Design and synthesis of a new highly efficient adjustable Ln-MOF for fluorescence sensing and information encryption.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yanan University, Yan'an 716000, China.

Elemental analysis, infrared spectroscopy, and X-ray single crystal diffraction indicated that a novel metal-organic framework (Tb-MOF) designated as 0.5n[Hbpy]·[Tb(dpa)(HO)]·4nHO was synthesized successfully, (where Hdpa = 5-(3, 4-dicarboxy- phenoxy) isophenic acid, bpy = protonated 4,4'-bipyridine). Tb-MOF adopts a 3D network structure based on Tb ions and the (dpa) ligand through µ: η, η, η, η binding modes.

View Article and Find Full Text PDF

Precise Preparation of Size-Uniform Two-Dimensional Platelet Micelles Through Crystallization-Assisted Rapid Microphase Separation Using All-Bottlebrush-Type Block Copolymers with Crystalline Side Chains.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.

Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.

View Article and Find Full Text PDF

Luminescence of the CsZrCl under High Pressure.

Inorg Chem

January 2025

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.

The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.

View Article and Find Full Text PDF

Rapid Crystallization and Versatile Metalation of Acetylhydrazone-Linked Covalent Organic Frameworks for Heterogenous Catalysis.

J Am Chem Soc

January 2025

School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.

Covalent organic frameworks (COFs) hold promise in heterogeneous metal catalysis benefiting from their robust, crystalline, and porous structures. However, synthetic challenges persist in prolonged crystallization times, limited metal loading, and uncertain coordination environments. Here, we present the rapid crystallization and versatile metalation of new acetylhydrazone-linked COFs (AH-COFs) by condensation of ketone and hydrazide components, featuring full conversion within 30 min under open-air and mild conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!