Background: Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Recently, an increasing number of studies have shown that Toll-like receptor 4 (TLR4), widely distributed on the surface of a variety of epithelial cells (ECs) and immune sentinel cells in the gut, plays a vital role in developing IBS.

Objectives: We sought to synthesize the existing literature on TLR4 in IBS and inform further study.

Methods: We conducted a systematic search of the PubMed, Embase (Ovid), Scopus, Web of Science, MEDLINE, and Cochrane Library databases on June 8, 2024, and screened relevant literature. Critical information was extracted, including clinical significance, relevant molecular mechanisms, and therapeutic approaches targeting TLR4 and its pathways.

Results: Clinical data showed that aberrant TLR4 expression is associated with clinical manifestations such as pain and diarrhea in IBS. Aberrant expression of TLR4 is involved in pathological processes such as intestinal inflammation, barrier damage, visceral sensitization, and dysbiosis, which may be related to TLR4, NF-κB, pro-inflammatory effects, and CRF. Several studies have shown that many promising therapeutic options (i.e., acupuncture, herbs, probiotics, hormones, etc.) have been able to improve intestinal inflammation, visceral sensitization, intestinal barrier function, intestinal flora, defecation abnormalities, and depression by inhibiting TLR4 expression and related pathways.

Conclusion: TLR4 plays a crucial role in the development of IBS. Many promising therapeutic approaches alleviate IBS through TLR4 and its pathways. Strategies for targeting TLR4 in the future may provide new ideas for treating IBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693509PMC
http://dx.doi.org/10.3389/fimmu.2024.1490653DOI Listing

Publication Analysis

Top Keywords

tlr4
10
toll-like receptor
8
plays vital
8
vital role
8
irritable bowel
8
bowel syndrome
8
therapeutic approaches
8
targeting tlr4
8
tlr4 expression
8
intestinal inflammation
8

Similar Publications

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.

View Article and Find Full Text PDF

Probiotics effectively alleviate host diarrhoea, but the specific mechanism is not clear. Therefore, we explored the protective mechanism of Bacillus coagulans (BC) on intestinal barrier injury induced by Klebsiella pneumoniae (K. pneumoniae) in rabbits by HE, immunofluorescence and 16S rRNA.

View Article and Find Full Text PDF

Objective: To investigate the interaction of inflammatory factors related to pulmonary infection and the TLR4/NF-κB signaling pathway in patients with spontaneous intracerebral hemorrhage (ICH).

Methods: A total of 325 critically ill ICH patients treated in our hospital from May 2021 to February 2024 were selected for this study. Based on whether the patient developed a pulmonary infection during treatment, they were divided into the infection group (n = 86) and the non-infection group (n = 239).

View Article and Find Full Text PDF

Acute lung injury i.e. ALI and its serious form acute respiratory distress syndrome (ARDS) are incurable medical conditions associated with significant global mortality and morbidity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!