Purpose: Heart failure (HF) is a clinical syndrome in which structural or functional abnormalities of the heart result in impaired ventricular filling or ejection capacity. In order to improve the adaptability of models to different patient populations and data situations. This study aims to develop predictive models for HF risk using six machine learning algorithms, providing valuable insights into the early assessment and recognition of HF by clinical features.

Patients And Methods: The present study focused on clinical characteristics that significantly differed between groups with left ventricular ejection fractions (LVEF) [≤40% and >40%]. Following the elimination of features with significant missing values, the remaining features were utilized to construct predictive models employing six machine learning algorithms. The optimal model was selected based on various performance metrics, including the area under the curve (AUC), accuracy, precision, recall, and F1 score. Utilizing the optimal model, the significance of clinical features was assessed, and those with importance values exceeding 0.8 were identified as crucial to the study. Finally, a correlation analysis was conducted to examine the relationships between these features and other significant clinical features.

Results: The logistic regression (LR) model was determined to be the optimal machine learning algorithm in this study, achieving an accuracy of 0.64, a precision of 0.45, a recall of 0.72, an F1 score of 0.51, and an AUC of 0.81 in the training set and 0.91 in the testing set. In addition, the analysis of feature importance indicated that blood calcium, angiotensin-converting enzyme inhibitors (ACEI) dosage, mean hemoglobin concentration, and survival duration were critical to the study, each possessing importance values exceeding 0.8. Furthermore, correlation analysis revealed a strong relationship between blood calcium and ionized calcium (|cor|=0.99), as well as a significant association between ACEI dosage (|cor|=0.68) and left ventricular metrics (|cor|=0.58); on the other hand, no correlations were observed between mean hemoglobin levels and other clinical characteristics.

Conclusion: The present study identified LR as the most effective risk prediction model for patients with HF, highlighting blood calcium, ACEI dosage, and mean hemoglobin level as significant predictors. These findings provide significant insights for the clinical prevention and early intervention of HF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693937PMC
http://dx.doi.org/10.2147/IJGM.S493789DOI Listing

Publication Analysis

Top Keywords

machine learning
16
predictive models
12
learning algorithms
12
blood calcium
12
acei dosage
12
heart failure
8
clinical
8
left ventricular
8
optimal model
8
values exceeding
8

Similar Publications

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Machine learning assisted classification RASAR modeling for the nephrotoxicity potential of a curated set of orally active drugs.

Sci Rep

January 2025

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.

We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) significantly influence tumor progression and therapeutic resistance in colorectal cancer (CRC). However, the distributions and functions of CAF subpopulations vary across the four consensus molecular subtypes (CMSs) of CRC. This study performed single-cell RNA and bulk RNA sequencing and revealed that myofibroblast-like CAFs (myCAFs), tumor-like CAFs (tCAFs), inflammatory CAFs (iCAFs), CXCL14CAFs, and MTCAFs are notably enriched in CMS4 compared with other CMSs of CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!