A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Association between Alzheimer's disease pathologic products and age and a pathologic product-based diagnostic model for Alzheimer's disease. | LitMetric

Background: Alzheimer's disease (AD) has a major negative impact on people's quality of life, life, and health. More research is needed to determine the relationship between age and the pathologic products associated with AD. Meanwhile, the construction of an early diagnostic model of AD, which is mainly characterized by pathological products, is very important for the diagnosis and treatment of AD.

Method: We collected clinical study data from September 2005 to August 2024 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Using correlation analysis method like cor function, we analyzed the pathology products (t-Tau, p-Tau, and Aβ proteins), age, gender, and Minimum Mental State Examination (MMSE) scores in the ADNI data. Next, we investigated the relationship between pathologic products and age in the AD and non-AD groups using linear regression. Ultimately, we used these features to build a diagnostic model for AD.

Results: A total of 1,255 individuals were included in the study (mean [SD] age, 73.27 [7.26] years; 691male [55.1%]; 564 female [44.9%]). The results of the correlation analysis showed that the correlations between pathologic products and age were, in descending order, Tau (Corr=0.75), p-Tau (Corr=0.71), and Aβ (Corr=0.54). In the AD group, t-Tau protein showed a tendency to decrease with age, but it was not statistically significant. p-Tau protein levels similarly decreased with age and its decrease was statistically significant. In contrast to Tau protein, in the AD group, Aβ levels increased progressively with age. In the non-AD group, the trend of pathologic product levels with age was consistently opposite to that of the AD group. We finally screened the optimal AD diagnostic model (AUC=0.959) based on the results of correlation analysis and by using the Xgboost algorithm and SVM algorithm.

Conclusion: In a novel finding, we observed that Tau protein and Aβ had opposite trends with age in both the AD and non-AD groups. The linear regression curves of the AD and non-AD groups had completely opposite trends. Through a machine learning approach, we constructed an AD diagnostic model with excellent performance based on the selected features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693723PMC
http://dx.doi.org/10.3389/fnagi.2024.1513930DOI Listing

Publication Analysis

Top Keywords

diagnostic model
20
alzheimer's disease
16
pathologic products
16
products age
12
correlation analysis
12
age non-ad
12
non-ad groups
12
age
11
age pathologic
8
groups linear
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!