Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.

Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA). Pharmacological activation of local PVT AR with its agonist CGS21680 induced significantly decreased 50% paw withdrawal threshold (50%PWTs) and paw withdrawal latency (PWLs), as measured by the Von Frey test and Hargreaves test in adult mice. Conversely, intra-PVT infusion of AR antagonist SCH58261 increased 50%PWTs and PWLs in mice; a robust analgesic effect was also observed in CFA mice with inflammatory pain. Importantly, these analgesic effects of AR antagonist SCH58261 were not affected by adjunctive intraperitoneal administration of naloxone or rimonabant, inhibitors of opioid receptor and cannabinoid CB1 receptor (CB1R), respectively.

Discussion: Overall, these pharmacological experiments underscore an essential role of microglia-expressed AR with in PVT in pain sensation while revealing a novel analgesic action independent of opioid and cannabinoids receptors. Thus, these findings highlight PVT microglial adenosine A receptor as a promising target for novel approaches to pain modulation and future analgesic development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693661PMC
http://dx.doi.org/10.3389/fphar.2024.1467305DOI Listing

Publication Analysis

Top Keywords

microglial adenosine
12
adenosine receptor
12
pain sensation
12
paraventricular thalamic
8
thalamic nucleus
8
analgesic effects
8
independent opioid
8
essential role
8
inflammatory pain
8
paw withdrawal
8

Similar Publications

Introduction: The paraventricular thalamic nucleus (PVT) is recognized for its critical role in pain regulation, yet the precise molecular mechanisms involved remain poorly understood. Here, we demonstrated an essential role of the microglial adenosine A receptor (AR) in the PVT in regulating pain sensation and non-opioid analgesia.

Method And Results: Specifically, AR was predominantly expressed in ionized calcium binding adapter molecule 1 (Iba1)-positive microglia cells within the PVT, with expression levels remaining unchanged in mice experiencing persistent inflammatory pain induced by complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

A Self-Reinforced "Microglia Energy Modulator" for Synergistic Amyloid-β Clearance in Alzheimer's Disease Model.

Angew Chem Int Ed Engl

December 2024

Nanyang Technological University, School of Chemistry, Chemical Engineering and Biotechnology, 21 Nanyang Link, 637371, Singapore, SINGAPORE.

Microglial phagocytosis is a highly energy-consuming process that plays critical roles in clearing neurotoxic amyloid-β (Aβ) in Alzheimer's disease (AD). However, microglial metabolism is defective overall in AD, thereby undermining microglial phagocytic functions. Herein, we repurpose the existing antineoplastic drug lonidamine (LND) conjugated with hollow mesoporous Prussian blue (HMPB) as a "microglial energy modulator" (termed LND@HMPB-T7) for safe and synergistic Aβ clearance.

View Article and Find Full Text PDF

Buyang Huanwu Decoction prevents hemorrhagic transformation after delayed t-PA infusion via inhibiting NLRP3 inflammasome/pyroptosis associated with microglial PGC-1α.

J Ethnopharmacol

December 2024

Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China. Electronic address:

Ethnopharmacological Relevance: Delayed tissue-type plasminogen activator (t-PA) thrombolysis, which has a restrictive therapeutic time window within 4.5 h following ischemic stroke (IS), increases the risk of hemorrhagic transformation (HT) and subsequent neurotoxicity. Studies have shown that the NLRP3 inflammasome activation reversely regulated by the PGC-1α leads to microglial polarization and pyroptosis to cause damage to nerve cells and the blood-brain barrier.

View Article and Find Full Text PDF

Microglia regulate motor neuron plasticity via reciprocal fractalkine and adenosine signaling.

Nat Commun

November 2024

Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.

We report an important role for microglia in regulating neuroplasticity within phrenic motor neurons. Brief episodes of low oxygen (acute intermittent hypoxia; AIH) elicit a form of respiratory motor plasticity known as phrenic long-term facilitation (pLTF) that is regulated by the balance of competing serotonin vs adenosine-initiated cellular mechanisms. Serotonin arises from brainstem raphe neurons, but the source of adenosine is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!