A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Differentiation Nomogram Model for Brucellar Spondylitis and Tuberculous Spondylitis. | LitMetric

Background: Tuberculous spondylitis (TS) and brucellar spondylitis (BS) exhibit certain similarities in clinical presentation and imaging characteristics, making differential diagnosis challenging. Developing a reliable differential diagnosis model can assist clinicians in distinguishing between these two conditions at an early stage, allowing for targeted prevention and treatment strategies.

Methods: Patients diagnosed with TS and BS were retrospectively collected and randomized into training and validation cohorts (ratio 7:3). The least absolute shrinkage and selection operator (LASSO) regression was used to reduce data dimensionality and select variables. Multivariate logistic regression was used to build predictive models. A nomogram was constructed to provide a visual representation of the model. Receiver operating characteristic (ROC) curve, calibration plots and decision curve analysis (DCA) were used to measure the predictive performance of the nomogram.

Results: A total of 183 patients included (101 cases of TB, 82 cases of BS) our study. Our results showed that these variables including time from symptom onset to admission, anorexia, adenosine deaminase (ADA) and psoas abscess were important to differentiate TS and BS. The area under the curve (AUC) of ROC curve was 0.820 [95% (0.749, 0.892)] and 0.899 [95% (0.823, 0.976)] for the training and validation cohort, respectively. The results of calibration curve and DCA confirmed that the nomogram performed well in differentiating TS patient from BS.

Conclusion: The combination of time from symptom onset to admission, anorexia, ADA and psoas abscess demonstrated good differential properties for TS and BS. We developed a new nomogram model that can effectively differentiate TS and BS based on these four characteristics, which could be a valid and useful clinical tool for clinicians to aid in early differential diagnosis and targeted treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693859PMC
http://dx.doi.org/10.2147/IDR.S497404DOI Listing

Publication Analysis

Top Keywords

differential diagnosis
12
nomogram model
8
brucellar spondylitis
8
training validation
8
roc curve
8
time symptom
8
symptom onset
8
onset admission
8
admission anorexia
8
ada psoas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!