A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wheeze and Crackle Discrimination Algorithm in Pneumonia Respiratory Signals. | LitMetric

Wheeze and Crackle Discrimination Algorithm in Pneumonia Respiratory Signals.

Conf Proc (IEEE Colomb Conf Commun Comput)

School of Electronic and Electrical Engineering, Sungkyunkwan University, South Korea.

Published: August 2024

A new pneumonia detection method is proposed to provide both pneumonia detection in respiratory sound signals and wheeze and crackle discrimination when pneumonia episodes are detected. In the proposed method, two-step hierarchy, classifying pneumonia in the first step and discriminating wheezing and crackling in the second step, is considered; the conventional pneumonia detection method is modified to improve pneumonia detection performance, while wheezing and crackling discrimination functionality is added to facilitate the application of appropriate remedies for each case. We used resampling techniques to address the imbalance in the ICBHI pneumonia dataset. The random forest algorithm is used to classify pneumonia from healthy respiratory data, as well as to distinguish between wheeze and crackle from pneumonia data. Against the ICBHI respiratory dataset, the proposed random forest-based hierarchy pneumonia detection method provides 85.40% accuracy in detecting pneumonia and 82.70% accuracy in discriminating wheeze from crackling, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11692369PMC
http://dx.doi.org/10.1109/COLCOM62950.2024.10720273DOI Listing

Publication Analysis

Top Keywords

pneumonia detection
20
wheeze crackle
12
pneumonia
12
detection method
12
crackle discrimination
8
wheezing crackling
8
detection
5
wheeze
4
discrimination algorithm
4
algorithm pneumonia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!