Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial. Despite its importance, the neural mechanisms underlying fatigue remain inadequately explored. In this study, we employed electrophysiological recordings in the M1 region of mice to investigate how excitation-inhibition dynamics and neural oscillations are regulated during exercise-induced fatigue. We observed that fatigue led to decreased voluntary physical activity and cognitive performance, manifesting as reduced running wheel distance, mean speed, exercise intensity, and exploratory behaviour. At the neural level, we detected increased firing frequencies for M1 neurons, including both pyramidal neurons and interneurons, along with heightened beta-band oscillatory activity and stronger coupling between beta-band oscillations and interneurons. These findings enhance our understanding of the mechanisms underlying fatigue, offering insights into behavioural, excitability, and oscillatory changes. The results of this study could pave the way for the development of novel intervention strategies to combat fatigue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11688262 | PMC |
http://dx.doi.org/10.1007/s11571-024-10182-1 | DOI Listing |
Cogn Neurodyn
December 2025
Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China.
Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial.
View Article and Find Full Text PDFFront Neurosci
December 2024
Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia.
Introduction: Time perception is a fundamental cognitive function, the brain mechanisms of which are not fully understood. Recent electroencephalography (EEG) studies have shown that neural oscillations in specific frequency bands may play a role in this process. In the current study, we sought to investigate how neurophysiological activity of cortical structures relates to subjective time estimations.
View Article and Find Full Text PDFNeuroimage
December 2024
Department of Neurosurgery, Affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Commun Biol
December 2024
Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
Transitive inference allows people to infer new relations between previously experienced premises. It has been hypothesized that this logical thinking relies on a mental schema that spatially organizes elements, facilitating inferential insights. However, recent evidence challenges the need for these complex cognitive processes.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Department of Mathematics and Statistics, University of Exeter, United Kingdom.
Conventional deep brain stimulation (DBS) for movement disorders is a well-established clinical treatment. Over the last few decades, over 200,000 people have been treated by DBS worldwide for several neurological conditions, including Parkinson's disease and Essential Tremor. DBS involves implanting electrodes into disorder-specific targets in the brain and applying an electric current.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!