Extracellular beta-amyloid aggregation and inflammation are in a complex and not fully understood interplay during hyperphosphorylated tau aggregation and pathogenesis of Alzheimer's disease. Our group has previously shown that an immune challenge with tumour necrosis factor alpha can alter extracellular beta-sheet containing aggregates in human-induced pluripotent stem cell-derived cortical neurons carrying familial Alzheimer's disease-related presenilin 1 mutations. Here, using single-molecule detection and super-resolution imaging techniques, we quantified and characterized the intra- and extracellular beta-amyloid and AT8-positive tau aggregates. Our results indicate a pre-existing Alzheimer's disease-like pathology caused by the presenilin 1 mutation, with increased beta-amyloid aggregates in both the cell lysate and conditioned media compared to isogenic controls and also increased intracellular tau aggregates. The main effect of tumour necrosis factor alpha treatment on presenilin 1 neurons was the formation of larger intracellular beta-amyloid aggregates. In contrast, isogenic controls showed more significant changes with tumour necrosis factor alpha treatment with an increase in beta-amyloid aggregates in the media but not intracellularly and an increase in tau aggregates in both the media and cell lysate, suggesting a chronic inflammation-driven mechanism for the development of sporadic Alzheimer's disease. Remarkably, we also found significant morphological differences between intra- and extracellular beta-amyloid and tau aggregates in human-induced pluripotent stem cell-derived cortical neurons, suggesting these neurons can only clear aggregates when small, and that larger aggregates stay inside the neurons. While majority of the beta-amyloid aggregates were cleared into the media, a greater portion of the tau aggregates remained intracellular. This size-dependent aggregate clearance was also shown to be conserved , using soaked and homogenized mouse and human post-mortem Alzheimer's disease brain samples. As such, our results are proposing a previously unknown, size-dependent aggregate clearance mechanism, which can possibly explain the intracellular aggregation of tau and extracellular aggregation of beta-amyloid.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694676PMC
http://dx.doi.org/10.1093/braincomms/fcae454DOI Listing

Publication Analysis

Top Keywords

tau aggregates
24
beta-amyloid aggregates
16
aggregates
13
extracellular beta-amyloid
12
alzheimer's disease
12
tumour necrosis
12
necrosis factor
12
factor alpha
12
tau
8
beta-amyloid tau
8

Similar Publications

Amyloidogenic protein aggregation is a pathological hallmark of Alzheimer's Disease (AD). As such, this critical feature of the disease has been instrumental in guiding research on the mechanistic basis of disease, diagnostic biomarkers and preventative and therapeutic treatments. Here we review identified molecular triggers and modulators of aggregation for two of the proteins associated with AD: amyloid beta and tau.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) plaques and the aggregation of tau protein, resulting in intense memory loss and dementia. Diabetes-associated cognitive dysfunction (DACD) is a complication of diabetes mellitus, which is associated with decreased cognitive function and impaired memory. A growing body of literature emphasize the involvement of microglia in AD and DACD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.

Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.

View Article and Find Full Text PDF

Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.

Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.

Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!