A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improvement of beam type element models of welded tubular junctions for fatigue analysis using artificial neural networks. | LitMetric

Improvement of beam type element models of welded tubular junctions for fatigue analysis using artificial neural networks.

Heliyon

Department of Industrial Engineering and Automotive, Nebrija University, Santa Cruz de Marcendo 27, 28040, Madrid, Spain.

Published: November 2024

The use of numerical methods for structural analysis has been increasingly integrated within the design process in different engineering fields over the last decades, inasmuch as the capacity of the computing resources have growth. This gave rise to calculation techniques based on virtual models such as the finite element method, which is nowadays a reference method for evaluation of complex tubular structures with vast application in the industry. For such type of structures, modeling approaches based on beam type elements are usually employed since they provide simplicity and low computational costs. Nevertheless, these elements have the drawback that they cannot account for local geometric characteristics and therefore consider and strain concentrations consequence of the local joint geometry. These local strains are of special concern in welded junctions subjected to fatigue loads, since are the ones that will most probably lead to failure. Consequently, improving beam type elements takes special relevance. In this scenario, the present paper evaluates a novel methodology to improve strain results of beam element type models of welded T-junctions using artificial neural networks to predict the correction values depending on the junction geometry and load type. Detailed validated models are used as reference for network training. The paper first evidence the importance of the adequate selection of the training data set in the network precision and a methodology to ensure the best network selection is described. Then, the network capability to correct beam element type deviations is demonstrated. The obtained results show that the aid of neural networks to finite element beam T-junctions models can improve local strain result deviations by more than 90 % in most cases, which potentially allows performing fatigue analysis using this simplified modelling technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693883PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e40181DOI Listing

Publication Analysis

Top Keywords

beam type
12
neural networks
12
models welded
8
fatigue analysis
8
artificial neural
8
finite element
8
type elements
8
beam element
8
element type
8
type
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!