One of the foremost challenges facing Bitcoin, as the most valuable cryptocurrency operating on a proof-of-work mechanism, is its substantial energy consumption and environmental impact. With the expansion of the Bitcoin market, mining has surged in popularity, particularly in countries where energy and monetary costs are comparatively low. This study aims to assess the impact of utilizing renewable energy from a photovoltaic system for Bitcoin mining, simulating a solar power plant with a 50.91-MW capacity alongside a corresponding Bitcoin mining operation in the United Arab Emirates. Economic evaluations were conducted using comprehensive, historically archived data to ensure results that closely mirror real-world scenarios. Additionally, for a more nuanced comparison, an economic assessment of selling the power plant's electricity to the grid was also performed, with the findings juxtaposed. The outcomes indicate that initiating such a system at the start of 2020 with an investment of approximately $42 million could recoup its costs in about 3.5 years. In contrast, selling electricity to the grid would extend the power plant's return on investment period to 8.1 years. Furthermore, the environmental evaluation revealed that adopting renewable solar energy for mining could avert the emission of around 50,000 tons of CO annually.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693900 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e39765 | DOI Listing |
Sci Rep
January 2025
Department of Mathematics, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India.
As India's population grows and urbanization accelerates, energy demand is increasing sharply while conventional sources fall behind. To tackle energy shortages and climate change, India must prioritize renewable energy sources (RES), which offer sustainable solutions. The country is rich in RES, which can enhance fuel mix for electricity generation.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China.
Transitioning to a power system heavily reliant on renewable wind energy involves more than just replacing conventional fossil-fuel-based power plant with wind farms, the wind energy must be able to meet the requirement of voltage establishment and power balance. It is believed that the self synchronized voltage source control of DFIG wind turbine generator is one of the possible solutions to realize virtual inertia and is helpful to increase the frequency stability of power system, thus is meaningful in the transformation of the power system dominated by renewable energy. Plenty of research has been conducted on the self synchronized voltage source control strategy in steady state, but few research is focused on the soft grid integration, which is a complicated process involving wind turbine control and power converter control.
View Article and Find Full Text PDFBMC Chem
January 2025
Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt.
The depletion of fossil fuels and growing environmental concerns necessitate the exploration of renewable energy sources. Biodiesel, a promising alternative fuel derived from sustainable feedstock, has attracted considerable attention. This study investigates the catalytic esterification of oleic acid, a readily available fatty acid, with ethanol for biodiesel production using a novel heterogeneous catalyst, ZrO/AlO.
View Article and Find Full Text PDFSci Total Environ
January 2025
Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!