A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Color Fundus Photography and Deep Learning Applications in Alzheimer Disease. | LitMetric

Objective: To report the development and performance of 2 distinct deep learning models trained exclusively on retinal color fundus photographs to classify Alzheimer disease (AD).

Patients And Methods: Two independent datasets (UK Biobank and our tertiary academic institution) of good-quality retinal photographs derived from patients with AD and controls were used to build 2 deep learning models, between April 1, 2021, and January 30, 2024. ADVAS is a U-Net-based architecture that uses retinal vessel segmentation. ADRET is a bidirectional encoder representations from transformers style self-supervised learning convolutional neural network pretrained on a large data set of retinal color photographs from UK Biobank. The models' performance to distinguish AD from non-AD was determined using mean accuracy, sensitivity, specificity, and receiving operating curves. The generated attention heatmaps were analyzed for distinctive features.

Results: The self-supervised ADRET model had superior accuracy when compared with ADVAS, in both UK Biobank (98.27% vs 77.20%; <.001) and our institutional testing data sets (98.90% vs 94.17%; =.04). No major differences were noted between the original and binary vessel segmentation and between both eyes vs single-eye models. Attention heatmaps obtained from patients with AD highlighted regions surrounding small vascular branches as areas of highest relevance to the model decision making.

Conclusion: A bidirectional encoder representations from transformers style self-supervised convolutional neural network pretrained on a large data set of retinal color photographs alone can screen symptomatic AD with high accuracy, better than U-Net-pretrained models. To be translated in clinical practice, this methodology requires further validation in larger and diverse populations and integrated techniques to harmonize fundus photographs and attenuate the imaging-associated noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695061PMC
http://dx.doi.org/10.1016/j.mcpdig.2024.08.005DOI Listing

Publication Analysis

Top Keywords

deep learning
12
color fundus
8
alzheimer disease
8
learning models
8
retinal color
8
fundus photography
4
photography deep
4
learning
4
learning applications
4
applications alzheimer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!