Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion. The theoretical and experimental results reveal that the spherical anion significantly increases the doping of HTMs due to an enhanced electron transfer from larger dipoles. The enhanced transfer leads to a shift in the Pb-6p defect orbitals, resulting in the shallower trap states. The linear structure of the TFSI- anion, the p-dopant anion with a larger van der Waals radius and spherical shape offers increased hydrophobicity and migration barriers protecting the perovskite. The use of sodium tetrakis(3,5-bis(trifluoro methyl)phenyl)borate results in enhanced thermal and ambient stability of PSCs. The devices fabricated with the shape- and radius-regulated p-dopant achieve remarkable efficiencies of 24.49% and 24.31% for CJ-01 and spiro-OMeTAD, respectively, representing the highest efficiency values for organic dopants to date. This study underscores the ingenious design of spherical anions as p-dopants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202420535 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.
Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
AIP Adv
December 2024
Center for Natural Sciences, University of Pannonia, Egyetem u. 10, Veszprém 8200, Hungary.
We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.
View Article and Find Full Text PDFGels
December 2024
Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, A. Nikitina Str., Building 22, Tver 170026, Russia.
In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.
View Article and Find Full Text PDFChemosphere
December 2024
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!