Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion. The theoretical and experimental results reveal that the spherical anion significantly increases the doping of HTMs due to an enhanced electron transfer from larger dipoles. The enhanced transfer leads to a shift in the Pb-6p defect orbitals, resulting in the shallower trap states.  The linear structure of the TFSI- anion, the p-dopant anion with a larger van der Waals radius and spherical shape offers increased hydrophobicity and migration barriers protecting the perovskite. The use of sodium tetrakis(3,5-bis(trifluoro methyl)phenyl)borate results in enhanced thermal and ambient stability of PSCs. The devices fabricated with the shape- and radius-regulated p-dopant achieve remarkable efficiencies of 24.49% and 24.31% for CJ-01 and spiro-OMeTAD, respectively, representing the highest efficiency values for organic dopants to date. This study underscores the ingenious design of spherical anions as p-dopants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202420535DOI Listing

Publication Analysis

Top Keywords

spherical anion
12
perovskite solar
8
solar cells
8
anion p-dopant
8
tfsi- anion
8
anion
6
p-dopant
5
p-dopant spherical
4
anion stable
4
stable n-i-p
4

Similar Publications

P-Dopant with Spherical Anion for Stable n-i-p Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

EPFL: Ecole Polytechnique Federale de Lausanne, Department of Chemistry, Rue de Industries 17, 1050, Sion, SWITZERLAND.

Li-TFSI/t-BP is the most widely utilized p-dopant for hole-transporting materials (HTMs) in state-of-the-art perovskite solar cells (PSCs). However, its nonuniformity of doping, along with the hygroscopicity and migration of dopants, results in the devices that exhibit limited stability and performance. This study reports the use of a spherical anion of the p-dopant, regulated by its radius and shape, as an alternative to the linear TFSI- anion.

View Article and Find Full Text PDF
Article Synopsis
  • The study developed GG/SA/Mg-Al-LDH composite microspheres (G-LDH) using natural polymers, which significantly improved adsorption of Congo red and hexavalent chromium compared to traditional Mg/Al-LDH.
  • G-LDH demonstrated an average particle size of 400-900 nm and a unique microsphere shape, with high adsorption capacities of 361.6 mg/g for Congo red and 461.7 mg/g for chromium solutions.
  • The adsorption behavior of G-LDH aligns with the Langmuir isotherm model, indicating an efficient, spontaneous process suitable for low-cost water treatment applications.
View Article and Find Full Text PDF

We present simulation results for the Donnan equilibrium between a homogeneous bulk reservoir and inhomogeneous confining geometries with varying number of restricted dimensions, . Planar slits ( = 1), cylindrical pores ( = 2), and spherical cavities ( = 3) are considered. The walls have a negative surface charge density.

View Article and Find Full Text PDF

In this study, novel anion photo-responsive supramolecular hydrogels based on cysteine-silver sol (CSS) and iodate anions (IO) were prepared. The peculiarities of the self-assembly process of gel formation in the dark and under visible-light exposure were studied using a complex of modern physico-chemical methods of analysis, including viscosimetry, UV spectroscopy, dynamic light scattering, electrophoretic light scattering, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. In the dark phase, the formation of weak snot-like gels takes place in a quite narrow IO ion concentration range.

View Article and Find Full Text PDF

This study evaluated the integration of electrocoagulation into a lab-scale membrane bioreactor (EC-MBR) for treating wastewater from a detergent manufacturing plant. The EC-MBR system achieved a higher chemical oxygen demand (COD) and anionic surfactant removal efficiencies of 95.1% and 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!