Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs. In this study, λ-carrageenan with anticoagulant function was modified by carboxymethylation into carboxymethyl λ-carrageenan (CM-λC); subsequently, CM-λC was used as a cross-linking agent to stabilize decellularized bovine pericardial tissue through amide bonds formed by a 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide/-Hydroxysuccinimide (EDC/NHS)-catalyzed reaction between the amino functional groups within pericardium and the carboxyl group located on CM-λC. Lastly, the inclusion complex (CD/Rutin) (formed by encapsulating the rutin molecule through the hydrophobic cavity of the mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin) was immobilized onto above BHVs materials (λCar-BP) through the amidation reaction. The treated sample exhibited mechanical properties and collagen stability similar to those of GA-BP, except for improved flexibility. Because of the presence of sulfonic acid groups and absence of aldehyde group as well as the Rutin release from CD/Rutin immobilized onto BHVs, the hemocompatibility, anti-inflammatory, HUVEC-cytocompatibility, and anticalcification properties, of the CM-λC-fixed BP modified with CD/Rutin was significantly better than that of GA-BP. In summary, this nonaldehyde-based natural polysaccharide cross-linking strategy utilizing the combination of CM-λC and CD/Rutin provides a novel solution to obtain BHVs with durable and stable anticoagulant, anticalcification, and anti-inflammatory properties, and has a wide range of potential applications in improving the various properties of BHVs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c01724DOI Listing

Publication Analysis

Top Keywords

bioprosthetic heart
8
heart valve
8
immobilized bhvs
8
bhvs
6
type bioprosthetic
4
heart
4
valve synergistic
4
synergistic modification
4
modification anticoagulant
4
anticoagulant polysaccharides
4

Similar Publications

Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.

View Article and Find Full Text PDF

Objectives: Re-operations due to material degeneration carry a burden for patients with congenital heart disease (CHD). The study aim was to compare rapid vs. slow degeneration of biomaterials in CHD patients.

View Article and Find Full Text PDF

Background: Takayasu arteritis is a large-vessel vasculitis, in addition to giant cell arteritis. Various post-operative complications associated with the cardiac macrovasculature have been reported. Detachment of the prosthetic valve, pseudoaneurysm formation, and dilatation of the aortic root are well-known post-operative complications associated with vasculitis syndromes, including Takayasu arteritis.

View Article and Find Full Text PDF

Background: Transcatheter aortic valve replacement (TAVR) is a well-established treatment option for patients with severe aortic valve stenosis; however, clinical valve thrombosis is a major challenge.

Case Summary: A 92-year-old woman underwent TAVR for severe aortic stenosis. One month later, the patient developed acute heart failure.

View Article and Find Full Text PDF

Objectives: To describe the workflow and value of three-dimensional rotational angiography (3DRA) in percutaneous pulmonary valve implantation (PPVI).

Background: 3DRA offers visualization of the entire topography in the chest and may enhance safety and reduce the risk for complications in PPVI through improved pre-procedural planning and per-procedural guidance.

Methods: All PPVI procedures with the use of 3DRA performed between August 2011 and December 2022 were reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!