Introduction: Bloodstream infections are serious conditions requiring precise bacterial identification for effective treatment. Traditional culture-based methods, while reliable, are time-consuming. The direct identification method by MALDI-TOF MS promises rapid and accurate identification directly from positive blood cultures.
Aim: To evaluate and compare the direct MALDI-TOF MS identification method for positive blood culture samples with the post-culture MALDI-TOF MS method, which is currently recognized as the gold standard in bacteriological identification.
Methods: during the study period, 324 positive blood culture samples received at the Central Laboratory of Bacteriology, Serology, and Hygiene of the IBN SINA Hospital Center in Rabat were included in the study. Each sample was processed for microorganism identification by MALDI-TOF MS using both direct and post-culture methods.
Results: The direct identification method by MALDI-TOF MS showed a lower overall identification success rate (64.8%) compared to the post-culture method (100%). However, it allowed for bacterial identification in less than one hour without the need for a sub-culturing step, highlighting the technique's potential to enhance the diagnostic process.
Conclusion: The direct identification method by MALDI-TOF MS has the potential to improve the speed of bacterial identification in positive blood cultures compared to the current gold standard of identification after culture. Despite its limitations, the direct method offers an opportunity to improve diagnosis and patient management, especially when combined with the standard method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.62438/tunismed.v102i12.5221 | DOI Listing |
Sci Rep
January 2025
College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.
Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
Department of Food Safety/Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. Electronic address:
Bacterial proteome microarrays are high-throughput, adaptable tools that allow the simultaneous investigation of thousands of proteins from various bacterial species. These arrays are used to explore bacterial pathogenicity, pathogen-host interactions, and clinical diseases. Recent advancements have expanded their application to profiling human antibodies, identifying biomarkers for infectious and autoimmune diseases, and studying antimicrobial peptides (AMPs).
View Article and Find Full Text PDFPhytomedicine
December 2024
State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China. Electronic address:
Background: Owing to high sensitivity and ability for absolute quantification, the droplet digital polymerase chain reaction (ddPCR) is widely used for viral and bacterial detection. However, few studies have been conducted on the application of ddPCR to identify the original plant species used in traditional Chinese medicine and Chinese patent medicine.
Purpose: In this study, we investigated the feasibility of using ddPCR to differentiate between Notopterygium incisum and N.
Curr Pharm Des
January 2025
Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
Introduction: Sepsis, like neutropenic sepsis, is a medical condition in which our body overreacts to infectious agents. It is associated with damage to normal tissues and organs by the immune system, which leads to the spread of inflammation throughout our body. Of note, microRNAs (miRNAs) have been found to have a critical role in the sepsis progression.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!