A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanomembrane on Graphene: Delamination Dynamics and 3D Construction. | LitMetric

Nanomembrane on Graphene: Delamination Dynamics and 3D Construction.

ACS Nano

Department of Materials Science & International Institute of Intelligent Nanorobots and Nanosystems, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, People's Republic of China.

Published: January 2025

Freestanding nanomembranes fabricated by lift-off technology have been widely utilized in microelectromechanical systems, soft electronics, and microrobotics. However, a conventional chemical etching strategy to eliminate nanomembrane adhesion often restricts material choice and compromises quality. Herein, we propose a nanomembrane-on-graphene strategy that leverages the weak van der Waals adhesion on graphene to achieve scalable and controllable release and 3D construction of nanomembranes. This fragile adhesion allows for precise delamination under stimulations, such as surface tension, thermal treatment, and mechanical bending. This strategy is compatible with various inorganic materials, including oxides, semiconductors, and metals, and allows for precise control of rolling and folding into 3D microstructures. Demonstrations include tubular microrobots with diverse locomotion and biodegradable nerve scaffolds based on facile delamination. Our nanomembrane-on-graphene strategy offers a versatile platform for the fabrication of functionalized microstructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c07589DOI Listing

Publication Analysis

Top Keywords

nanomembrane-on-graphene strategy
8
allows precise
8
nanomembrane graphene
4
graphene delamination
4
delamination dynamics
4
dynamics construction
4
construction freestanding
4
freestanding nanomembranes
4
nanomembranes fabricated
4
fabricated lift-off
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!