Objectives: Periodontal disease is a chronic inflammatory disease caused by periodontopathogenic bacteria, and its progression leads to periodontal tissue destruction and tooth loss. Zerumbone is a bioactive substance found in ginger () and is known to have bioactive effects such as anticancer effects, but there have been no attempts to use it for periodontitis treatment. In addition, there have been no reports examining its effects on periodontal tissue component cells. In this experiment, we aimed to determine whether zerumbone affects the production of inflammatory mediators induced by tumor necrosis factor (TNF)-α in human periodontal ligament cells (HPDLCs), including its effects on signaling pathways.

Methods: HPDLCs were stimulated by TNF-α (10 ng/ml) with or without zerumbone (6.25, 12.5, or 25 µM). Cytokine production in supernatant was determined using ELISA. Activation of signal transduction pathways and intracellular protein expression were investigated using the western blot analysis.

Results: Zerumbone significantly suppressed TNF-α-induced production of CC chemokine ligand 2 (CCL2), CCL20, CXC chemokine ligand 10 (CXCL10), and interleukin-6 (IL-6) in HPDLCs. In addition, zerumbone decreased intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2) expression in TNF-α-stimulated HPDLCs. Furthermore, zerumbone suppressed activation of nuclear factor (NF)-κB and signal transducer and activator of transcription 3 (STAT3) pathways in TNF-α-treated HPDLCs. Finally, zerumbone enhanced the production of heme oxygenase-1 (HO-1), an antioxidant enzyme, in HPDLCs.

Conclusion: These results suggest that zerumbone suppressed the production of several inflammatory mediators by inhibiting the NF-κB and STAT3 pathways in HPDLCs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2024.2445724DOI Listing

Publication Analysis

Top Keywords

inflammatory mediators
12
zerumbone suppressed
12
zerumbone
9
human periodontal
8
periodontal ligament
8
ligament cells
8
periodontal tissue
8
production inflammatory
8
chemokine ligand
8
stat3 pathways
8

Similar Publications

Nickel pollution adversely affects human health and causes various disorders, mainly hepatic and renal dysfunction. The present work focused on a comparative evaluation of the pure form of curcumin (CU) with curcumin-encapsulated chitosan nanoconjugates (CS/CU NCs), on mitigation of the delirious effects of Ni on hepatorenal tissue. Forty-two male rats were allocated into 6 groups (n = 7 for each) as follows: (1) control, (2) CU, (3) CS/CU NCs, (4) Ni, (5) Ni + CU, (6) Ni + CS/CU NCs.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

Secondhand vape exposure regulation of CFTR and immune function in cystic fibrosis.

Am J Physiol Lung Cell Mol Physiol

January 2025

Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.

Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.

View Article and Find Full Text PDF

Objective: To assess CXC chemokine receptor 5 (CXCR5) circulating DNA methylation differences in autoimmune rheumatic diseases and their relation with clinical features.

Methods: Targeted methylation sequencing was performed using peripheral blood from 164 rheumatoid arthritis (RA), 30 systemic lupus erythematosus (SLE), 30 ankylosing spondylitis (AS), 30 psoriatic arthritis (PsA), 24 Sjögren's syndrome (SS) patients, and 30 healthy controls (HC).

Results: Significant differences in CXCR5 cg19599951 methylation were found between RA and HC, as well as AS and SLE.

View Article and Find Full Text PDF

Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment.

ACS Nano

January 2025

Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.

The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!