Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.

Adv Healthc Mater

School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.

Published: January 2025

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm. This pilot study aimed to compare the profiles of BEVs from salivary biofilm cultured on a 2D tissue culture plate and 3D melt electrowritten medical-grade polycaprolactone (MEW mPCL) scaffold. BEVs derived from MEW mPCL biofilm exhibited enhanced purity and yield without altered EV morphology and lipopolysaccharide (LPS) content, with enriched BEVs-associated DNA from Capnocytophaga, porphyromonas, and veillonella genus. Moreover, compared to saliva controls, MEW mPCL BEVs showed comparable DNA expression of Tannerella forsythia, and Treponema denticola and significantly higher expression in Porphyromonas gingivalis, Eikenella corrodens and Lactobacillus acidophilus. Together, these findings highlight a more detailed microbial profile with BEVs derived from salivary biofilms cultured on 3D MEW PCL scaffolds, which facilitates an effective in vitro model with a greater resemblance to naturally occurring biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202403300DOI Listing

Publication Analysis

Top Keywords

mew mpcl
12
bacterial extracellular
8
extracellular vesicles
8
salivary polymicrobial
8
polymicrobial biofilms
8
pilot study
8
bevs derived
8
bevs
5
microbial dna
4
dna profiles
4

Similar Publications

Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.

Adv Healthc Mater

January 2025

School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.

View Article and Find Full Text PDF

Fabrication of 3D bioactive melt electrowriting composite scaffold with high osteogenic potential.

Colloids Surf B Biointerfaces

January 2025

School of Dentistry, University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia. Electronic address:

A key challenge in using melt electrowriting (MEW) technology is incorporating large amounts of bioactive inorganic materials, such as hydroxyapatite (HA). In the present study, following optimization of the fabrication parameters, 40 %-HA (HA40) nanoparticles were pre-mixed into medical-grade polycaprolactone (PCL) and processed using the MEW (MEW) technique to mimic the structure and function of the natural extracellular matrix (ECM) for bone regeneration. The HA40 fibrous composite scaffolds showed continuous writing and obtained a well-connected and orderly stacked fibre with a small diameter size (67 ± 8.

View Article and Find Full Text PDF

The expected outcome after a scaffold augmented hernia repair is the regeneration of a tissue composition strong enough to sustain biomechanical function over long periods. It is hypothesised that melt electrowriting (MEW) medical-grade polycaprolactone (mPCL) scaffolds loaded with platelet-rich plasma (PRP) will enhance soft tissue regeneration in fascial defects in abdominal and vaginal sheep models. A pre-clinical evaluation of vaginal and abdominal hernia reconstruction using mPCL mesh scaffolds and polypropylene (PP) meshes was undertaken using an ovine model.

View Article and Find Full Text PDF

Fabrication and characterization of a 3D polymicrobial microcosm biofilm model using melt electrowritten scaffolds.

Biomater Adv

February 2023

School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia. Electronic address:

The majority of current biofilm models or substrates are two-dimensional (2D) and support biofilm growth in the horizontal plane only. Three-dimensional (3D) substrates may support both horizontal and vertical biofilm growth. This study compared biofilm growth quantity and quality between highly porous 3D micrometric fibrous scaffolds and 2D film substrates fabricated from medical grade polycaprolactone (mPCL).

View Article and Find Full Text PDF

Gelatin methacryloyl (GelMA) hydrogels are a mechanically and biochemically tuneable biomaterial, facilitating chondrocyte culture for tissue engineering applications. However, a lack of characterisation and standardisation of fabrication methodologies for GelMA restricts its utilisation in surgical interventions for articular cartilage repair. The purpose of this study was to determine the effects of gelatin source and photoinitiator type on the redifferentiation capacity of monolayer-expanded human articular chondrocytes encapsulated in GelMA/hyaluronic acid methacrylate (HAMA) hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!