Lightweight and robust self-powered wearable devices are of great importance in rehabilitation and medical assistance, but this places greater demands on the development of functional materials. In particular, a balance between reducing the weight of materials and enhancing their mechanical performance is urgently needed. Here, this study reports a design strategy based on a cross-scale strengthening mechanism, which endows triboelectric materials with mechanically robust properties, and can withstand more than 16,600 times its weight without any deformation. A biomimetic ordered network structure with "wall-septum" is obtained by using the directional ice templating method, followed by the formation of more hydrogen bonds between polymer molecular chains promoted by salting-out. The resultant triboelectric material exhibits a Young's modulus of 130.3 MPa, and a specific modulus of 409.0 kN m/kg. Triboelectric materials are used to construct highly robust triboelectric nanogenerators that are stable even under an impact of 735.5 kPa. The accurate acquisition of a human motion state signal in the process of rehabilitation training is realized. This study provides a universal strategy for the development of lightweight and robust triboelectric material and provides a solution for the application of self-powered wearable devices in rehabilitation training.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c08445DOI Listing

Publication Analysis

Top Keywords

triboelectric materials
12
rehabilitation training
12
mechanically robust
8
lightweight robust
8
self-powered wearable
8
wearable devices
8
triboelectric material
8
robust triboelectric
8
triboelectric
6
robust
5

Similar Publications

High-performance triboelectric nanogenerator employing a swing-induced counter-rotating motion mechanism and a dual potential energy storage and release strategy for wave energy harvesting.

Mater Horiz

January 2025

School of Materials Science and Engineering, Energy Materials and Devices Key Lab of Anhui Province for Photoelectric Conversion, Anhui University, Hefei, Anhui 230601, China.

The triboelectric nanogenerator (TENG) has been proved to be a very promising marine energy harvesting technology. Herein, we have developed a high-performance triboelectric nanogenerator (SD-TENG) with low friction, high durability, swing-induced counter-rotating motion mechanism (SICRMM) and dual potential energy storage and release strategy (DPESRS). The unique counter-rotating motion mechanism enabled SD-TENG to convert the external linear and swing motion energy into rotation motion energy of the inner and outer cylinders, and then converted it into a controllable power output.

View Article and Find Full Text PDF

Lightweight and robust self-powered wearable devices are of great importance in rehabilitation and medical assistance, but this places greater demands on the development of functional materials. In particular, a balance between reducing the weight of materials and enhancing their mechanical performance is urgently needed. Here, this study reports a design strategy based on a cross-scale strengthening mechanism, which endows triboelectric materials with mechanically robust properties, and can withstand more than 16,600 times its weight without any deformation.

View Article and Find Full Text PDF

Design of Double Strains in Triboelectric Nanogenerators toward Improving Human Behavior Monitoring.

Langmuir

January 2025

Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China.

Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism.

View Article and Find Full Text PDF

Triboelectric Nanogenerator-Based Self-Powered Urinary Protein Detection Utilizing Triboelectric Material with Colorimetric Function.

ACS Nano

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.

Chronic kidney disease (CKD) has a high incidence rate, and if not detected and treated in a timely manner, it poses a risk of progressing to renal failure and even uremia. Performing home monitoring of urinary protein, which is a recognized indicator of CKD, is considered an effective means of achieving early warning for CKD. Although the existing urinary protein test strips for home self-testing are cost-effective and simple, they suffer from drawbacks such as susceptibility to contamination and lack of quantitative detection capability.

View Article and Find Full Text PDF

Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Key Laboratory of Lightweight Composite, Shanghai Engineering Research Center of Nano Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China.

Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!