Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores if increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signalling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post-injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioural tests showed significant improvements in paw reaching, grip strength, and ladder rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscles EMG. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post-SCI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymthe.2024.12.040 | DOI Listing |
J Affect Disord
January 2025
Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China. Electronic address:
Purpose: To elucidate the structural-functional connectivity (SC-FC) coupling in white matter (WM) tracts in patients with major depressive disorder (MDD).
Methods: A total of 178 individuals diagnosed with MDD and 173 healthy controls (HCs) were recruited for this study. The Euclidean distance was calculated to assess SC-FC coupling.
Alzheimers Dement
December 2024
University of Guadalajara, Guadalajara, JA, Mexico.
Background: The ways in which diverse genetic variants interact to affect the phenotype of AD is poorly understood. The relatively consistent phenotype associated with specific mutations causing autosomal dominant AD (ADAD) provides the opportunity to study how other genetic variants contribute to disease manifestations.
Method: We performed an in-depth case study of a patient with the A431E PSEN1 mutation who had onset of progressive spastic paraplegia at age 20.
Mol Ther
January 2025
Institute of Experimental Medicine CAS, Department of Neuroregeneration, Videnska 1083, 142 20, Prague, Czech Republic. Electronic address:
Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.
View Article and Find Full Text PDFCortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233.
The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!