Controllable transformation between the bolaamphiphilic molecule assemblies with different morphological nanostructures represents an exciting new direction for materials. However, there are still significant challenges for the quantitative detection and real-time monitoring of a controllable nanoself-assembly process due to insufficient measuring methods. Herein, we propose a new and effective fluorescence technology for realizing quantitative detection of a controllable conversion process of one-dimensional (1D)/two-dimensional (2D) nanoassemblies by introducing AIEgens as the fluorescence signal part. First, an aggregation-induced emission (AIE)-active bolaamphiphilic molecule (TPE-C8-Br) was designed and synthesized by incorporating tetraphenylethene (TPE) as the chromophore into the cationic amphiphile. Subsequently, the 1D nanofibrous morphology of TPE-C8-Br was successfully converted into the 2D rectangular and circular sheet of tosylate (TPE-C8-Ts) and sodium 1-hexanesulfonate (TPE-C8-HS) with the same molecular skeleton by the simple counterion change, respectively. Interestingly, all 2D nanoassemblies exhibited a stronger fluorescence sensitization effect than that of the 1D nanoassembly at the concentration above the critical micelle concentration (CMC) due to the higher degree of aggregation; thus, the rotation of the AIE-active TPE moiety is more restricted in TPE-C8-Ts and TPE-C8-HS. More meaningfully, a rather good linear correlation (FI = 3174.86 + 5282.29MP, = 0.999) and a quadratic correlation (FI = 2113.71 + 5163.56MP - 2966.07MP) were obtained between the molar percentage (MP) of the 2D nanoassembly and the fluorescence intensity (FI). The two proposed methods respond very well with regard to dependability, which can be used for the quantitative calculation of the molar ratio of 1D and 2D components in the controllable nanoself-assembly process. Therefore, this work offers an efficient and practical method for realizing the dynamic monitoring and quantitative detection of mutual conversion between different nanoassemblies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c04421 | DOI Listing |
Sci Rep
January 2025
Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, Naples, Italy.
BPV1, BPV2, BPV13, and BPV14 are all genotypes of bovine delta papillomaviruses (δPV), of which the first three cause infections in horses and are associated with equine sarcoids. However, BPV14 infection has never been reported in equine species. In this study, we examined 58 fresh and thawed commercial semen samples from healthy stallions.
View Article and Find Full Text PDFAnn Clin Microbiol Antimicrob
January 2025
Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
Background: The emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) is a significant public health concern, as colistin has been the last resort for treating such infections. This study aimed to investigate the prevalence and molecular characteristics of colistin-resistant CRKP isolates in Central South China.
Methods: CRKP isolates from twelve hospitals in Central South China were screened for colistin resistance using broth microdilution.
Talanta
December 2024
Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China. Electronic address:
Laser-induced breakdown spectroscopy (LIBS) is a rapidly evolving in-situ multi-element analysis technique that has significantly advanced the field of liquid analysis. This study employs a femtosecond laser for quantitative analysis of heavy metals in flowing liquids, exploring its detection sensitivity and accuracy. Femtosecond pulsed laser excitation of water in a dynamic environment generates plasma while effectively preventing liquid splashing.
View Article and Find Full Text PDFTalanta
December 2024
NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:
This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).
View Article and Find Full Text PDFTalanta
December 2024
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:
Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!