Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood (PB) progenitor cells from bone marrow (BM) into circulation for PB stem cell transplantation (PBSCT). This study aimed to develop a population pharmacokinetic-pharmacodynamic (PK-PD) model of filgrastim in healthy subjects to optimize PB CD34 cell collection. Plasma filgrastim concentrations and CD34 cell count data were obtained from a clinical study involving healthy Korean subjects. A total of 1378 plasma concentration measurements and 982 CD34 cell count data collected from 53 subjects were used in the PK-PD model. Filgrastim PKs were adequately described by a one-compartment linear disposition model with an additional transit compartment for absorption. Log-transformed body weight was the only significant covariate affecting the volume of distribution and clearance. CD34 cell mobilization was best captured by a modified Friberg model, assuming continual entry of proliferating BM stem cells into PB via a single transit compartment. Simulation results suggested that the 5 μg/kg twice-daily dosing regimen may yield higher CD34 cell counts compared to the 10 μg/kg once-daily regimen for achieving target CD34 cell counts of 20/μL and 50/μL. We successfully developed a robust PK-PD model of G-CSF that optimizes the yield of CD34 cells during allogeneic PBSCT. This model can guide the efficient determination of optimal G-CSF dosing regimens and CD34 cell harvesting strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cts.70121DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695272PMC

Publication Analysis

Top Keywords

cd34 cell
32
pk-pd model
12
cd34
9
cell
9
population pharmacokinetic-pharmacodynamic
8
granulocyte colony-stimulating
8
colony-stimulating factor
8
cell harvesting
8
model filgrastim
8
cell count
8

Similar Publications

LncRNA-MEG3/miR-93-5p/SMAD7 axis mediates proliferative and inflammatory phenotypes of fibroblast-like synoviocytes in rheumatoid arthritis.

Int J Biol Macromol

January 2025

Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:

Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets‌ aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.

View Article and Find Full Text PDF

Objective: Hirudin has shown potential in promoting angiogenesis and providing neuroprotection in ischemic stroke; however, its therapeutic role in promoting cerebrovascular angiogenesis remains unclear. In this study, we aimed to investigate whether hirudin exerts neuroprotective effects by promoting angiogenesis through the regulation of the Wnt/β-catenin signaling pathway.

Methods: An in vitro model of glucose and oxygen deprivation/reperfusion (OGD/R) was established using rat brain microvascular endothelial cells (BMECs).

View Article and Find Full Text PDF

Acute myeloid leukemia is a cancer involving uncontrolled proliferation of hematopoietic cells. Cutaneous involvement is referred to as leukemia cutis (LC). The histopathologic presentation of LC is variable, and may present with perivascular, periadnexal, dermal, or subcutaneous infiltrate.

View Article and Find Full Text PDF

Objective To investigate the effect of serum containing Xinfeng capsule (XFC) on the angiogenesis of human umbilical vein endothelial cells (HUVEC) induced by rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and its mechanism of action. Methods An in vitro co-culture model of RA-FLS and HUVEC was established. Serum containing XFC was prepared by oral gavage of SD rats.

View Article and Find Full Text PDF

Introduction: Calcific aortic valve disease (CAVD) is increasingly prevalent among the aging population, and there is a notable lack of drug therapies. Consequently, identifying novel drug targets will be of utmost importance. Given that type 2 diabetes is an important risk factor for CAVD, we identified key genes associated with diabetes - related CAVD via various bioinformatics methods, which provide further potential molecular targets for CAVD with diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!