Pulmonary fibrosis is characterized by progressive lung scarring, leading to a decline in lung function and an increase in morbidity and mortality. This study leverages single-cell sequencing and machine learning to unravel the complex cellular and molecular mechanisms underlying pulmonary fibrosis, aiming to improve diagnostic accuracy and uncover potential therapeutic targets. By analyzing lung tissue samples from pulmonary fibrosis patients, we identified distinct cellular phenotypes and gene expression patterns that contribute to the fibrotic process. Notably, our findings revealed a significant enrichment of activated B cells, CD4 T cells, macrophages, and specific fibroblast subpopulations in fibrotic versus normal lung tissue. Machine learning analysis further refined these observations, resulting in the development of a diagnostic model with enhanced precision, based on key gene signatures including TMEM52B, PHACTR1, and BLVRB. Comparative analysis with existing diagnostic models demonstrates the superior accuracy and specificity of our approach. Through In vitro experiments involving the knockdown of PHACTR1, TMEM52B, and BLVRB genes demonstrated that these genes play crucial roles in inhibiting the expression of α-SMA and collagen in lung fibroblasts induced by TGF-β. Additionally, knockout of the PHACTR1 gene reduced inflammation and collagen deposition in a bleomycin-induced mouse model of pulmonary fibrosis in vivo. Additionally, our study highlights novel gene signatures and immune cell profiles associated with pulmonary fibrosis, offering insights into potential therapeutic targets. This research underscores the importance of integrating advanced technologies like single-cell sequencing and machine learning to deepen our understanding of pulmonary fibrosis and pave the way for personalized therapeutic strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-024-06031-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697757PMC

Publication Analysis

Top Keywords

pulmonary fibrosis
28
machine learning
16
single-cell sequencing
12
sequencing machine
12
cellular molecular
8
potential therapeutic
8
therapeutic targets
8
lung tissue
8
gene signatures
8
pulmonary
7

Similar Publications

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment.

J Cyst Fibros

January 2025

Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA.

Background: Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment.

View Article and Find Full Text PDF

Introduction: Ca2+ signaling in fibroblasts would be one of the important mediators of lung fibrosis. This study investigated the relationship between calcium channel blocker usage and the risk of developing interstitial lung disease and idiopathic pulmonary fibrosis.

Material And Methods: This cohort study used data from the Korean National Health Screening Cohort spanned from January 1, 2004, to December 31, 2015.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.

View Article and Find Full Text PDF

EVALUATION OF THE EFFECTS OF FAVIPIRAVIR (T-705) ON THE LUNG TISSUE OF HEALTY RATS: AN EXPERIMENTAL STUDY.

Food Chem Toxicol

January 2025

Department of Histology and Embryology, Erciyes University, Faculty of Medicine, 38039 Kayseri, Turkey. Electronic address:

Favipiravir, a broad-spectrum RNA-dependent RNA polymerase inhibitor widely used during the COVID-19 pandemic, effectively reduces viral load but has been linked to inflammatory changes in tissues such as the liver and kidneys. High-dose and prolonged use of favipiravir for COVID-19 raises concerns about its potential toxic effects on the lungs, particularly in patients with pre-existing pulmonary conditions. This study investigated favipiravir's effects on lung tissue in healthy rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!