Systemic light chain (AL) amyloidosis is a rare clonal plasma cell disorder characterized by the production of amyloidogenic immunoglobulin light chains, which causes the formation and deposition of amyloid fibrils, leading to multi-organ dysfunction. Current treatment is directed at the underlying plasma cell clone to achieve a profound reduction in the monoclonal free light chain production. The standard-of-care first-line therapy is a combination of daratumumab, cyclophosphamide, bortezomib and dexamethasone (D-VCd regimen), resulting in high rates of haematological and organ responses. However, AL amyloidosis remains incurable, and all patients inevitably relapse. Hence, novel treatment options are needed for patients with an inadequate response or relapsed/refractory disease. B-cell maturation antigen (BCMA) is a tumour necrosis factor (TNF receptor superfamily receptor overexpressed on plasma cells in multiple myeloma (MM) and AL amyloidosis. Recently, several novel anti-BCMA immunotherapies have been approved for the treatment of relapsed/refractory MM, including antibody-drug conjugate belantamab mafodotin, bispecific antibodies teclistamab and elranatamab and chimeric antigen receptor T-cell therapies idecabtagene vicleucel and ciltacabtagene autoleucel. Despite lower expression than in MM, BCMA is also a promising target in AL amyloidosis. This review aims to provide up-to-date information on the efficacy and toxicity of anti-BCMA therapy in AL amyloidosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bjh.19960DOI Listing

Publication Analysis

Top Keywords

b-cell maturation
8
light chain
8
plasma cell
8
amyloidosis
6
update b-cell
4
maturation antigen-directed
4
antigen-directed therapies
4
therapies amyloidosis
4
amyloidosis systemic
4
systemic light
4

Similar Publications

CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives.

Front Immunol

January 2025

Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China.

Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE.

View Article and Find Full Text PDF

Systemic light chain (AL) amyloidosis is a rare clonal plasma cell disorder characterized by the production of amyloidogenic immunoglobulin light chains, which causes the formation and deposition of amyloid fibrils, leading to multi-organ dysfunction. Current treatment is directed at the underlying plasma cell clone to achieve a profound reduction in the monoclonal free light chain production. The standard-of-care first-line therapy is a combination of daratumumab, cyclophosphamide, bortezomib and dexamethasone (D-VCd regimen), resulting in high rates of haematological and organ responses.

View Article and Find Full Text PDF

Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy.

Nat Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants of concern (VOCs) has greatly diminished the neutralizing activity of previously FDA-approved monoclonal antibodies (mAbs), including that of antibody cocktails and of first-generation broadly neutralizing antibodies such as S309 (Sotrovimab). In contrast, antibodies targeting cryptic conformational epitopes of the receptor binding domain (RBD) have demonstrated broad activity against emerging variants, but exert only moderate neutralizing activity, which has so far hindered clinical development. Here, we utilize in vitro display technology to identify and affinity-mature antibodies targeting the cryptic class 6 epitope, accessible only in the "up" conformation of the SARS-CoV-2 spike trimer.

View Article and Find Full Text PDF

Objective: To investigate the effect of genetic polymorphism of (rs1801133) on methotrexate (MTX) related toxicity in pediatric mature B-cell lymphoma patients.

Methods: Fifty-eight intermediate and high risk patients under 18 years of age with mature B-cell lymphoma who received 5 g/m MTX (24 h intravenous infusion) in Sun Yat-sen University Cancer Center from August 2014 to December 2021 were included, and their toxicity of high-dose MTX (HD-MTX) were monitored and analyzed.

Results: Among the 58 pediatric patients, the number of CC, CT, and TT genotypes for was 33, 19 and 6, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!