C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy. PDBAG1 has demonstrated substantial efficacy in suppressing triple-negative breast cancer (TNBC) both in vitro and in vivo. Its mechanism of action involves mitochondrial impairment and the inhibition of oxidative phosphorylation (OXPHOS), achieved through direct binding to C1QBP, thereby promoting its ubiquitin-dependent degradation. Concomitantly, due to metabolic adaptability, we have observed an up-regulation of glycolysis to compensate for OXPHOS inhibition. We observed an aberrant phenomenon wherein the hypoxia signalling pathway in tumour cells exhibited significant activation under normoxic conditions following PDBAG1 treatment. Through size-exclusion chromatography (SEC) and isothermal titration calorimetry (ITC) assays, we have validated that PDBAG1 is capable of binding C1QBP with a K value of 334 nM. Furthermore, PDBAG1 inhibits homologous recombination repair proteins and facilitates synergism with poly-ADP-ribose polymerase inhibitors in cancer therapy. This underscores that PDBAG1 ultimately induces insurmountable survival stress through multiple mechanisms while concurrently engendering therapeutic vulnerabilities specific to TNBC. KEY POINTS: The newly discovered peptide PDBAG1 is the first small molecule substance found to directly target and degrade C1QBP, demonstrating significant tumour inhibitory effects and therapeutic potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695203 | PMC |
http://dx.doi.org/10.1002/ctm2.70162 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Physiology, School of Basic Medical Sciences, Department of Colorectal Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China. Electronic address:
A comprehensive understanding of the dynamic changes in plasma cells (PCs) during inflammation remains elusive. In this study, we analyzed the distinct responses of PCs across different phases of inflammation in a dextran sodium sulfate (DSS)-induced mouse colitis model. Six-week-old male C57BL/6 mice were treated with 2.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China.
C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.
View Article and Find Full Text PDFJ Mol Cell Cardiol
November 2024
Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA; Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211, USA. Electronic address:
J Cell Biochem
April 2024
Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India.
Missense mutations in the DNA binding domain of p53 are observed frequently in esophageal squamous cell carcinoma (ESCC). Recent studies have revealed the potentially oncogenic transcriptional networks regulated by mutant p53 proteins. However, majority of these studies have focused on common "hotspot" p53 mutations while rarer mutations are poorly characterized.
View Article and Find Full Text PDFNat Commun
October 2023
Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA.
Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!