Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity. Despite this, ligand optimization has received little attention, and their role in activating SACs is poorly understood. Here, we explore the impact of structurally diverse phosphine ligands on the performance of nitrogen-doped carbon supported single-atoms (Pd@NC) in the Sonogashira-Hagihara (SH) cross-coupling reaction, using X-ray absorption spectroscopy and density functional theory simulations to rationalize the observed trends. Compared to the ligand-free SAC, SH activity is enhanced in almost all ligand-assisted systems, with reactivity varying by up to 8 orders of magnitude depending on the ligand choice. Distinct trends emerge based on the free ligand volume and ligand class. Unlike molecular systems, the electronic effects of phosphine ligands are less significant in SACs due to the modulating influence of the support. Instead, the performance of SAC-ligand systems is governed by a balance between the ligand deformation energy during coordination with metal centers, and their resulting accessibility to cross-coupling reagents. These findings offer key insights into optimizing Pd-SACs by leveraging phosphine ligands to activate metal centers and tailor the 3D environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c14131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!