With advancing age, significant changes occur in the female reproductive system, the most notable of which is the decline in oocyte quality, a key factor affecting female fertility. However, the mechanisms underlying oocyte aging remain poorly understood. In this study, we obtained oocytes from aged and young female mice and performed single-cell transcriptome sequencing, comparing our findings with existing proteomic analyses. Our analysis revealed that one of the primary characteristics of aging oocytes is the disruption of calcium ion homeostasis. Specifically, we identified two key genes involved in the oocyte aging process, Calb1 and Rpl23. Experimental validation demonstrated that knockdown of CALB1 in oocytes led to reduced calcium ion levels in the endoplasmic reticulum and mitochondria, resulting in mitochondrial dysfunction and meiotic defects. Further experiments suggested that RPL23 may function as a downstream gene of CALB1, and its knockdown caused mitochondrial dysfunction, excessive accumulation of reactive oxygen species (ROS), and spindle assembly defects. Notably, overexpression of these two genes in aging oocytes partially rescued the maternal age-related defective phenotypes, underscoring their crucial roles in oocyte aging. This study provides a comprehensive understanding of the specific mechanisms underlying mouse oocyte aging at single-cell resolution, supported by experimental validation, and offers new directions and potential targets for future research into age-related reproductive health issues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/acel.14466 | DOI Listing |
Sci China Life Sci
January 2025
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Mitochondrial Rho-GTPase 1 (MIRO1) is an outer mitochondrial membrane protein which regulates mitochondrial transport and mitophagy in mitosis. In present study, we reported the crucial roles of MIRO1 in mammalian oocyte meiosis and its potential relationship with aging. We found that MIRO1 expressed in mouse and porcine oocytes, and its expression decreased in aged mice.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
Low fertility in cows leads to early removal from herds. Since reproductive traits are complex and have low heritability, genetic analysis can aid in improving reproduction. This study identified key genes linked to fertility by conducting genome- and transcriptome-wide association studies, RNA-seq analysis, meta-analysis, weighted gene co-expression network analysis, and functional enrichment analysis.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand.
This study investigated the effects of coenzyme Q10 (CoQ10) supplementation on in vitro oocyte maturation, lipid peroxidation, and embryonic development in prepubertal and aging Thai-Holstein cows. First, we used slaughterhouse-derived oocytes to confirm that CoQ10 (50 μM) significantly enhanced cleavage (53.33% vs.
View Article and Find Full Text PDFCells
January 2025
Third Department of Obstetrics and Gynecology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is one of the major mediators of inflammatory responses, and its activation is closely linked to oxidative stress. This interaction contributes to a decline in oocyte quality, reduced fertilization potential, and impaired embryo development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!