Cohesin positions the epigenetic reader Phf2 within the genome.

EMBO J

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.

Published: January 2025

AI Article Synopsis

  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.

Article Abstract

Genomic DNA is assembled into chromatin by histones, and extruded into loops by cohesin. These mechanisms control important genomic functions, but whether histones and cohesin cooperate in genome regulation is poorly understood. Here we identify Phf2, a member of the Jumonji-C family of histone demethylases, as a cohesin-interacting protein. Phf2 binds to H3K4me3 nucleosomes at active transcription start sites (TSSs), but also co-localizes with cohesin. Cohesin depletion reduces Phf2 binding at sites lacking H3K4me3, and depletion of Wapl and CTCF re-positions Phf2 together with cohesin in the genome, resulting in the accumulation of both proteins in chromosomal regions called vermicelli and cohesin islands. Conversely, Phf2 depletion reduces cohesin binding at TSSs lacking CTCF and decreases the number of short cohesin loops, while increasing the length of heterochromatic B compartments. These results suggest that Phf2 is an 'epigenetic reader', which is translocated through the genome by cohesin-mediated DNA loop extrusion, and which recruits cohesin to active TSSs and limits the size of B compartments. These findings reveal an unexpected degree of cooperativity between epigenetic and architectural mechanisms of eukaryotic genome regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s44318-024-00348-2DOI Listing

Publication Analysis

Top Keywords

cohesin
10
genome regulation
8
depletion reduces
8
phf2
7
genome
5
cohesin positions
4
positions epigenetic
4
epigenetic reader
4
reader phf2
4
phf2 genome
4

Similar Publications

Cohesin positions the epigenetic reader Phf2 within the genome.

EMBO J

January 2025

Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.

Article Synopsis
  • Genomic DNA is organized into chromatin with the help of histones and cohesin, but their cooperation in genome regulation is not well understood.
  • Researchers identified Phf2, a histone demethylase, as a protein that interacts with cohesin, indicating a potential role in regulating transcription at active gene sites.
  • The studies show that Phf2 helps recruit cohesin to transcription start sites and affects the size of chromatin compartments, highlighting an important relationship between histone modification and genome architecture in eukaryotic cells.
View Article and Find Full Text PDF

Co-essentiality analysis identifies PRR12 as a cohesin interacting protein and contributor to genomic integrity.

Dev Cell

December 2024

Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

The cohesin complex is critical for genome organization and regulation, relying on specialized co-factors to mediate its diverse functional activities. Here, by analyzing patterns of similar gene requirements across cell lines, we identify PRR12 as a mediator of cohesin and genome integrity. We show that PRR12 interacts with NIPBL/MAU2 and the cohesin complex, and that the loss of PRR12 results in reduced cohesin localization and a substantial increase in DNA double-strand breaks in mouse NIH-3T3 cells.

View Article and Find Full Text PDF

Promoter capture Hi-C identifies promoter-related loops and fountain structures in Arabidopsis.

Genome Biol

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.

Background: Promoters serve as key elements in the regulation of gene transcription. In mammals, loop interactions between promoters and enhancers increase the complexity of the promoter-based regulatory networks. However, the identification of enhancer-promoter or promoter-related loops in Arabidopsis remains incomplete.

View Article and Find Full Text PDF

Comments on the Hox timer and related issues.

Cells Dev

December 2024

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

2024 not only marked the 100th anniversary of the discovery of the organizer by Hilde Pröscholdt-Mangold and Hans Spemann, but also the 40th anniversary of the discovery of the homeobox, a DNA region encoding a DNA binding peptide present in several transcription factors of critical importance for the gastrulating embryo. In particular, this sequence is found in the 39 members of the amniote Hox gene family, a series of genes activated in mid-gastrulation and involved in organizing morphologies along the extending anterior to posterior (AP) body axis. Over the past 30 years, the study of their coordinated regulation in various contexts has progressively revealed their surprising regulatory strategies, based on mechanisms acting in-cis, which can translate a linear distribution of series of genes along the chromatin fiber into the proper sequences of morphologies observed along our various body axes.

View Article and Find Full Text PDF

Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants.

Adv Sci (Weinh)

December 2024

School of Advanced Agriculture Sciences and School of Life Sciences, Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In eukaryotes, chromatin is compacted within nuclei under the principle of compartmentalization. On top of that, condensin II establishes eukaryotic chromosome territories, while cohesin organizes the vertebrate genome by extruding chromatin loops and forming topologically associating domains (TADs). Thus far, the formation and roles of these chromatin structures in plants remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!