Due to the small and irregular shapes of vegetable seeds, modeling them is challenging, and the imprecision of physical parameters hinders the performance of vegetable seeders, impeding simulation development. In this study, seeds of cucumber, pepper, and tomato were seen as examples. A 3D point cloud reconstruction method based on Structure-from-Motion Multi-View Stereo (SfM-MVS) was employed to accurately extract 3D models of small and irregularly shaped seeds. Corresponding discrete element models were established. Combining physical and simulation experiments on seed angle of repose(AOR), significant parameters influencing seed AOR and their ranges were identified through Plackett-Burman Design (PBD) and steepest ascent test. Within this range, the GA-BP-GA algorithm was used to accurately inverse the optimal parameter combination. The results indicate that the SfM-MVS 3D point cloud reconstruction method can extract more detailed shape information of small and irregularly shaped seeds. The GA-BP-GA algorithm achieved an inversion of physical parameters with the smallest relative error of cucumber, pepper, and tomato seeds being 0.26%, 0.98%, and 0.51%, respectively. Through experimental comparative analysis, the feasibility and accuracy of this method in calibrating discrete element parameters for small and irregularly shaped seeds were validated. The established seed models and calibrated parameters in this study can be implemented to the simulation optimization design of vegetable seeders, enhancing development efficiency and operational performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695837 | PMC |
http://dx.doi.org/10.1038/s41598-024-84375-3 | DOI Listing |
Environ Monit Assess
January 2025
Technische Hochschule Nürnberg Georg Simon Ohm, Institute of Hydraulic Engineering and Water Resources Management, Nuremberg, Germany.
Through the mobilization of movable objects due to the extreme hydraulic conditions during a flood event, blockages, damage to infrastructure, and endangerment of human lives can occur. To identify potential hazards from aerial imagery and take appropriate precautions, a change detection tool (CDT) was developed and tested using a study area along the Aisch River in Germany. The focus of the CDT development was on near real-time analysis of point cloud data generated by structure from motion from aerial images of temporally separated surveys, enabling rapid and targeted implementation of measures.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Imam Khomeini Naval Science University of Nowshahr, Nowshahr, Iran.
The maximum power delivered by a photovoltaic system is greatly influenced by atmospheric conditions such as irradiation and temperature and by surrounding objects like trees, raindrops, tall buildings, animal droppings, and clouds. The partial shading caused by these surrounding objects and the rapidly changing atmospheric parameters make maximum power point tracking (MPPT) challenging. This paper proposes a hybrid MPPT algorithm that combines the benefits of the salp swarm algorithm (SSA) and hill climbing (HC) techniques.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.
Sci Rep
January 2025
Department of Electrical Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran.
Climate change is one of the most crucial issues in human society such that if it is not given sufficient attention, it can become a great threat to both humans and the Earth. Due to global warming, soil erosion is increasing in different regions. Therefore, this issue will require further investigation and the use of new tools.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, 712100, China.
Due to the small and irregular shapes of vegetable seeds, modeling them is challenging, and the imprecision of physical parameters hinders the performance of vegetable seeders, impeding simulation development. In this study, seeds of cucumber, pepper, and tomato were seen as examples. A 3D point cloud reconstruction method based on Structure-from-Motion Multi-View Stereo (SfM-MVS) was employed to accurately extract 3D models of small and irregularly shaped seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!