A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process. Characterization techniques, including UV-Vis, XRD, SEM, and FT-IR, revealed the successful synthesis of green-routed nano-scaled materials with altered optical properties after matrix coating, high crystallinity in the iron oxide phase, rougher surface morphology, and characteristic Fe-O peaks at 594 cm⁻. Additionally, the electrochemical behavior of the prepared nano-materials was characterized by cyclic voltammetry (CV), where low ΔEp values (0.473 V) for FeO/PANI NCs indicated the presence of reversible charge transfer mechanisms at the electrode surface, reflecting a high rate of electron transfer. The synthesized nanocomposite was used to modify pencil graphite anodes to construct four single-chamber MFCs: bare pencil graphite anodes, pencil graphite anodes modified with FeO, PANI, and FeO/PANI nanocomposites. The maximum open circuit voltage (OCV) value was 645 ± 24.50 mV, with a high power output of 424.51 ± 6.86 mW/m and current density of 2475.01 ± 1.23 mA m produced by the FeO/PANI NCs modified pencil graphite electrode, which is more than six times the efficiency in terms of power density compared to the unmodified pencil graphite electrode (PGE). These results demonstrate that the synthesized nanocomposite plays an effective and value-added role in modifying traditional carbon anode electrodes within an MFC energy conversion device system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-024-84311-5 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696000 | PMC |
Sci Rep
January 2025
Department of Chemistry, Natural and Computational Sciences, Wolaita Soddo University, P. Box 138, Wolaita Soddo, Ethiopia.
A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.
View Article and Find Full Text PDFLangmuir
January 2025
Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, Lahore 54000, Pakistan.
By integrating iron-cobalt squarate bimetallic metal-organic framework (Fe-Co-SqBMoF) based smart material (SM) with functional DNA (fDNA), we designed a target responsive fDNA@Fe-Co-SqBMoF bioelectrode that exhibits recognition induced switchable response to serve as a reagentless single step electrochemical apta-switch (REA). The construct takes advantage of fDNA ability to bind and concentrate target on the receptor interface, while Fe-Co-SqBMoF@SM multifeatures to serve as an immobilization matrix and a signal generating electrochemical switch. Fe-Co-SqBMoF was introduced to prepare a redox active pencil graphite electrode (PGE), while fDNA (aptamer) was decorated on the receptor PGE to impart specificity and selectivity.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Electrical-Electronics Engineering, Abdullah Gul University, Kayseri 38039, Türkiye.
detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell FeO@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity.
View Article and Find Full Text PDFAnal Biochem
December 2024
Department of Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577451, Karnataka, India.
In the present work, a convenient, efficient and disposable electrochemical sensor has been developed by electropolymerizing methylene blue (PMB) on the surface of a pencil graphite electrode (PGE), which facilitates the electrochemical analysis of an antioxidant l-Ascorbic Acid (AA). The structural characteristics of both the methylene blue modified pencil graphite electrode (PMB/PGE) and the bare pencil graphite electrode (BPGE) have been examined using scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray analysis (EDX). Additionally, the charge transfer behavior has been evaluated using the electron impedance spectroscopy (EIS).
View Article and Find Full Text PDFTalanta
November 2024
Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
This study describes the synthesis of Co/Al-LDH through an electrochemical method on a pencil graphite substrate, followed by the partial conversion of Co/Al-LDH to CoO via a calcination method on the same substrate. The obtained sorbent served as an extraction phase for the direct solid-phase microextraction (SPME) of environmental pollutants, including chlorophenols and aromatic hydrocarbons, from wastewater samples. The extracted analytes were quantified using high-performance liquid chromatography-ultraviolet detection (HPLC-UV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!