Enhancing the performance of SSVEP-based BCIs by combining task-related component analysis and deep neural network.

Sci Rep

Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.

Published: January 2025

Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established. To address this issue, we propose a classification framework named eTRCA + sbCNN that combines an ensemble task-related component analysis (eTRCA) algorithm and a sub-band convolutional neural network (sbCNN) for recognizing the frequency of SSVEP signals. The two models are first trained separately, then their classification score vectors are added together, and finally the frequency corresponding to the maximal summed score is decided as the frequency of SSVEP signals. The proposed framework can effectively exploit the complementarity between the two kinds of feature signals and significantly improve the classification performance of SSVEP-based BCIs. The performance of the proposed method is validated on two SSVEP BCI datasets and compared with that of eTRCA, sbCNN and other state-of-the-art models. Experimental results indicate that the proposed method significantly outperform the compared algorithms, and thus helps to promote the practical application of SSVEP- BCI systems.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84534-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697369PMC

Publication Analysis

Top Keywords

performance ssvep-based
12
ssvep signals
12
ssvep-based bcis
8
task-related component
8
component analysis
8
neural network
8
frequency ssvep
8
proposed method
8
enhancing performance
4
bcis combining
4

Similar Publications

Enhancing the performance of SSVEP-based BCIs by combining task-related component analysis and deep neural network.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.

Steady-State Visually Evoked Potential (SSVEP) signals can be decoded by either a traditional machine learning algorithm or a deep learning network. Combining the two methods is expected to enhance the performance of an SSVEP-based brain-computer interface (BCI) by exploiting their advantages. However, an efficient strategy for integrating the two methods has not yet been established.

View Article and Find Full Text PDF

This study focuses on improving the performance of steady-state visual evoked potential (SSVEP) in brain-computer interfaces (BCIs) for robotic control systems. The challenge lies in effectively reducing the impact of artifacts on raw data to enhance the performance both in quality and reliability. The proposed MVMD-MSI algorithm combines the advantages of multivariate variational mode decomposition (MVMD) and multivariate synchronization index (MSI).

View Article and Find Full Text PDF

Multi-layer ear-scalp distillation framework for ear-EEG classification enhancement.

J Neural Eng

December 2024

School of Computer Science Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China.

Background: Ear-electroencephalography (ear-EEG) holds significant promise as a practical tool in brain-computer interfaces (BCIs) due to its enhanced unobtrusiveness, comfort, and mobility compared to traditional steady-state visual evoked potential (SSVEP)-based BCI systems. However, achieving accurate SSVEP classification with ear-EEG remains a major challenge due to the significant attenuation and distortion of the signal amplitude.

Objective: Our aim is to enhance the classification performance of SSVEP using ear-EEG and to increase its practical application value.

View Article and Find Full Text PDF

Enhancing detection of SSVEP-based BCIs via a novel temporally local canonical correlation analysis.

J Neurosci Methods

February 2025

School of Electronics and Communication Engineering, Guangzhou University, Guangzhou 510006, China.

Background: In recent years, spatial filter-based frequency recognition methods have become popular in steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems. However, these methods are ineffective in suppressing local noise, and they rely on the length of the data. In practical applications, enhancing recognition performance with short data windows is a significant challenge for the BCI systems.

View Article and Find Full Text PDF

SSVEP-based brain-computer interface (BCI) systems have received a lot of attention due to their relatively high Signal to Noise Ratio (SNR) and less training requirements. Most of the existing steady-state visual evoked potential (SSVEP) detection algorithms treat the prior probability of each alternative target being selected as equal. In this study, the prior probability distribution of alternative targets was introduced into the SSVEP recognition algorithm, and an asynchronous training-free SSVEP-BCI detection algorithm for non-equal prior probability scenarios was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!