Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions. The investigation specifically analyzed the effects of varying initial PS concentrations (100 to 900 mg/L), pH values (4 to 10), reaction durations (20 to 40 min), and C. vulgaris dosages (50 to 400 mg/L). Data analysis indicated that QM best described the experimental findings, leading to the identification of optimal conditions for PS removal: a pH of 7.5, a reaction time of 31.90 min, a C. vulgaris dosage of 274.05 mg/L, and a PS level of 789.37 mg/L. Under these conditions, the study achieved a maximum removal efficiency of 73.01% for PS. These outcomes demonstrate the significant potential of C. vulgaris in efficiently removing PS from water. Furthermore, using algae as a green, eco-friendly alternative to conventional chemical coagulants offers a practical and sustainable approach to addressing MPs pollution in our water systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695633 | PMC |
http://dx.doi.org/10.1038/s41598-024-84114-8 | DOI Listing |
Sci Rep
January 2025
Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Microplastics (MPs) are emerging pollutants that pose significant risks to ecosystems due to their inherent toxicity, capacity to accumulate various pollutants, and potential for synergistic impacts. Given these concerns, the focus of this research is on the critical need for effective MPs removal from aquatic environments. Using BBD method, this study aimed to identify the key parameters affecting the removal of MPs by algal biomass from aqueous solutions.
View Article and Find Full Text PDFNat Microbiol
January 2025
River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, ENAC, Ecole Polytechnique Fédérale de Lausanne, Sion, Switzerland.
Sci Rep
December 2024
Bioresource and Environmental Security, Sandia National Laboratories, P. O. Box 969, Livermore, CA, 94551-0969, USA.
Global health is affected by viral, bacterial, and fungal infections that cause chronic and often fatal diseases. Identifying novel antimicrobials through innovative methods that are active against human pathogens will create a new, necessary pipeline for chemical discovery and therapeutic development. Our goal was to determine whether algal production systems represent fertile ground for discovery of antibiotics and antifungals.
View Article and Find Full Text PDFMar Drugs
November 2024
Nuclear Research Centre of Birine, Ain Oussera 17200, Algeria.
This study represents the first investigation into the ultrasonic and microwave extraction of bioactive metabolites from (red seaweed) and () (brown seaweed), with a focus on their biological activities. The research compares ultrasound-assisted extraction (UAE) with microwave-assisted extraction (MAE) utilizing a hydromethanolic solvent to evaluate their effects on these seaweeds' bioactive compounds and biological activities. The assessment included a series of antioxidant essays: DPPH, ABTS, phenanthroline, and total antioxidant capacity, followed by enzyme inhibition activities: alpha-amylase and urease.
View Article and Find Full Text PDFmSystems
December 2024
School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
The genus () is most often associated with human clinical samples and livestock. However, are also prevalent in the hindgut of the marine herbivorous fish (Silver Drummer), and analysis of their carbohydrate-active enzyme (CAZyme) encoding gene repertoires suggests degrade macroalgal biomass to support fish nutrition. To further explore host-associated traits unique to -derived , we compared 445 high-quality genomes of available in public databases (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!