To investigate the dynamic compression properties and crushing features of gas-containing coal under complex geological environments, a dynamic and static combined loading test system was independently developed for conducting triaxial dynamic compression tests. The dynamic stress-strain curves under different strain rates were analyzed to study the effects of strain rate and gas pressure on the dynamic mechanical characteristics. Crushed coal samples were sieved and analyzed using a standard sieve and fractal theory. The study reveals that strain rate and gas pressure significantly influence the plastic deformation stage of the dynamic stress-strain curve of gas-containing coal. Under high strain rates, low gas pressure lengthens the plastic deformation stage, while high gas pressure shortens this stage and enhances brittleness. Increased strain rates lead to higher peak stress and peak strain in gas-containing coal samples. As gas pressure increases, the dynamic peak stress decreases, and the peak strain initially increases and then decreases. The damage form of gas-containing coal is primarily tensile-shear, accompanied by crushing damage. The fractal dimension increases at higher gas pressures and strain rates but stabilizes at gas pressures greater than 0.7 MPa. These findings enhance the understanding of the dynamic behavior of gas-containing coal under triaxial loading and provide valuable insights for the prevention and control of dynamic hazards in gas-containing coal bodies under complex stress environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696542 | PMC |
http://dx.doi.org/10.1038/s41598-024-84005-y | DOI Listing |
Sci Rep
January 2025
State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, Anhui, China.
Sci Rep
November 2024
College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
In view of the difficult problem of gas and dust exceeding the limit during the digging process of a gas tunnel in Guizhou Province, Southwest China, the CFD numerical simulation method was applied to study the gas tunnel airflow, dust and gas transport law during the digging process. A physical simulation experimental platform was established to verify the numerical simulation results, and research was carried out in terms of gas-containing gas-carrying dust disaster prevention and control, and ventilation optimization was carried out for this gas tunnel. The results showed that the maximum gas concentration in the tunnel face under press-in ventilation could be about 1%, and the local dust concentration can be up to 900 mg/m.
View Article and Find Full Text PDFSci Rep
November 2024
Anhui Engineering Research Center of Exploitation and Utilization of Closed/Abandoned Mine Resources, Anhui University of Science and Technology, Huainan, Anhui, 232001, China.
To study the influence of cyclic disturbance stress on the mechanical behavior of coal during mining, a gas containing coal fluid-solid coupling servo seepage experimental system was used to conduct experimental research on the acoustic emission (AE) characteristics of gas containing coal under two stress paths of graded cyclic loading and unloading. The AE characteristics of coal damage and failure processes under different cyclic stress paths were analyzed. The research results indicate that: (1) The overall characteristics of AE signals for both graded cyclic loading and unloading paths are basically the same.
View Article and Find Full Text PDFSci Rep
October 2024
Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, 266590, China.
With the continuous advance of coal mining, the normal stress in front of coal seams will continue to increase, resulting in changes of internal structure and permeability of coal seams. During the continuous advance of mining face, the increase of vertical stress somewhere in front of coal seams may not be a transient process, but a gradual change process. Therefore, this paper carried out the seepage test of gas-containing coal under discontinuous loading axial stress.
View Article and Find Full Text PDFACS Omega
September 2024
School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China.
The coal is affected by the latent heat of the phase change of in situ and migrating water and the exothermic heat of gas adsorbed by the coal during the freezing process, which leads to different temperatures at different locations and times inside the coal. Relying on the independently developed simulation platform for the freezing response characteristics of gas-containing coal, simulation experiments on the internal temperature change of the coal freezing process under different ambient cryogenic treatment temperatures were carried out, and the effects of the phase change latent heat of the in situ water and migrating water and the exothermic heat of gas adsorbed by the coal on the freezing coal temperature field were taken into account, so as to establish a temperature field model of the cryogenic treatment process of the coal under the influence of the thermal effect of the water and gas and construct the internal heat transfer model of the freezing coal with the aid of COMSOL. The internal heat transfer of frozen coal was constructed with the help of COMSOL, and the mathematical model of temperature field proposed in this paper was simulated and verified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!