Decoding the general role of tRNA queuosine modification in eukaryotes.

Sci Rep

Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.

Published: January 2025

Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity. Here, through bioinformatics analysis of representative eukaryotic genomes we have predicted: i) the genes enriched in NAU codons, whose translation would be affected by tRNA Q-modification (Q-genes); and ii) the specific biological processes of each organism enriched in Q-genes, which generally in eukaryotes would be related to ubiquitination, phosphatidylinositol metabolism, splicing, DNA repair or cell cycle. These bioinformatics results provide evidence to support for the first time in eukaryotes that the wide diversity of phenotypes associated with tRNA Q-modification previously described in various species would directly depend on the control of Q-genes translation, and would allow prediction of unknown Q-dependent processes, such as Akt activation and p53 expression, which we have tested in human cancer cells. Considering the relevance of the Q-related processes, our findings may support further exploration of the role of Q in cancer and other pathologies. Moreover, since eukaryotes must salvage Q from bacteria, we suggest that changes in Q supply by the microbiome would affect the expression of host Q-genes, altering its physiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695743PMC
http://dx.doi.org/10.1038/s41598-024-83451-yDOI Listing

Publication Analysis

Top Keywords

nau codons
8
codons translation
8
trna q-modification
8
eukaryotes
5
decoding general
4
general role
4
trna
4
role trna
4
trna queuosine
4
queuosine modification
4

Similar Publications

Decoding the general role of tRNA queuosine modification in eukaryotes.

Sci Rep

January 2025

Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.

Transfer RNA (tRNA) contains modified nucleosides essential for modulating protein translation. One of these modifications is queuosine (Q), which affects NAU codons translation rate. For decades, multiple studies have reported a wide variety of species-specific Q-related phenotypes in different eukaryotes, hindering the identification of a general underlying mechanism behind that phenotypic diversity.

View Article and Find Full Text PDF

High-temperature geothermal springs host simplified microbial communities; however, the activities of individual microorganisms and their roles in the carbon cycle in nature are not well understood. Here, quantitative stable isotope probing (qSIP) was used to track the assimilation of C-acetate and C-aspartate into DNA in 74 °C sediments in Gongxiaoshe Hot Spring, Tengchong, China. This revealed a community-wide preference for aspartate and a tight coupling between aspartate incorporation into DNA and the proliferation of aspartate utilizers during labeling.

View Article and Find Full Text PDF

tRNA queuosine modification is involved in biofilm formation and virulence in bacteria.

Nucleic Acids Res

October 2023

Department of Molecular Evolution, Centro de Astrobiología (CAB), CSIC-INTA, Carretera de Ajalvir km 4, Torrejón de Ardoz 28850, Madrid, Spain.

tRNA modifications are crucial for fine-tuning of protein translation. Queuosine (Q) modification of tRNAs is thought to modulate the translation rate of NAU codons, but its physiological role remains elusive. Therefore, we hypothesize that Q-tRNAs control those physiological processes involving NAU codon-enriched genes (Q-genes).

View Article and Find Full Text PDF

While amber suppression is the most common approach to introduce noncanonical amino acids into proteins in live cells, quadruplet codon decoding has potential to enable a greatly expanded genetic code with up to 256 new codons for protein biosynthesis. Since triplet codons are the predominant form of genetic code in nature, quadruplet codon decoding often displays limited efficiency. In this work, we exploited a new approach to significantly improve quadruplet UAGN and AGGN (N = A, U, G, C) codon decoding efficiency by using recoding signals imbedded in mRNA.

View Article and Find Full Text PDF

The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity.

Nucleic Acids Res

May 2021

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.

Base-modification can occur throughout a transfer RNA molecule; however, elaboration is particularly prevalent at position 34 of the anticodon loop (the wobble position), where it functions to influence protein translation. Previously, we demonstrated that the queuosine modification at position 34 can be substituted with an artificial analogue via the queuine tRNA ribosyltransferase enzyme to induce disease recovery in an animal model of multiple sclerosis. Here, we demonstrate that the human enzyme can recognize a very broad range of artificial 7-deazaguanine derivatives for transfer RNA incorporation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!