Advanced ovarian cancer often presents with multiple lesions exhibiting varying responses to chemotherapy, highlighting the critical influence of the tumor microenvironment (TME). This study investigates the phenomenon of chemotherapeutic hormesis, wherein low doses of chemotherapeutic agents, such as cisplatin (CDDP) and paclitaxel (PTX), paradoxically stimulate rather than inhibit cancer cell proliferation. Our findings indicate that NOS3 ovarian cancer cells, particularly drug-resistant variants, exhibit enhanced proliferation when exposed to low concentrations of these drugs. This effect is further amplified under hypoxic conditions, suggesting that the TME plays a pivotal role in modulating chemotherapeutic outcomes. Mechanistically, low-dose CDDP upregulates pathways involved in cell cycle progression, specifically the G2/M checkpoint and mitotic spindle formation, accelerating rather than arresting the cell cycle. Furthermore, the activation of the reactive oxygen species (ROS) pathway and increased glutathione levels indicate increased cellular response to oxidative stress, further contributing to cell survival and proliferation. These findings challenge traditional treatment strategies that prioritize the maximization of drug dosage, suggesting that a more nuanced approach considering the influence of the TME and the potential for hormesis could improve therapeutic outcomes. Understanding the mechanisms driving chemotherapeutic hormesis is essential for developing more effective treatments for refractory ovarian cancer. Future research should focus on mitigating the impact of hormesis to enhance the efficacy of chemotherapy in resistant cancer types.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-024-84290-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696277PMC

Publication Analysis

Top Keywords

ovarian cancer
16
chemotherapeutic hormesis
12
tumor microenvironment
8
refractory ovarian
8
proliferation findings
8
cell cycle
8
cancer
6
chemotherapeutic
5
hormesis induced
4
induced tumor
4

Similar Publications

Background: Anastomotic leakage (AL) is a major complication in colorectal surgery, particularly following rectal cancer surgery, necessitating effective prevention strategies. The increasing frequency of colorectal resections and anastomoses during cytoreductive surgery (CRS) for peritoneal carcinomatosis further complicates this issue owing to the diverse patient populations with varied tumor distributions and surgical complexities. This study aims to assess and compare AL incidence and associated risk factors across conventional colorectal cancer surgery (CRC), gastrointestinal CRS (GI-CRS), and ovarian CRS (OC-CRS), with a secondary focus on evaluating the role of protective ostomies.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Background: The quality of life (QOL) of ovarian cancer patients is often impaired by refractory ascites. Cell-free and concentrated ascites reinfusion therapy (CART) is a palliative treatment for refractory ascites, but adverse events, such as fever, are problematic. Several cytokines have been suggested to be responsible for the adverse events, but they have not been investigated in detail.

View Article and Find Full Text PDF

Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer.

Sci Rep

January 2025

Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.

Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.

View Article and Find Full Text PDF

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!