Efficient control strategy for electric furnace temperature regulation using quadratic interpolation optimization.

Sci Rep

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

Published: January 2025

Electric furnaces play an important role in many industrial processes where precise temperature control is essential to ensure production efficiency and product quality. Traditional proportional-integral-derivative (PID) controllers and their modified versions are commonly used to maintain temperature stability by reacting quickly to deviations. In this study, the real PID plus second-order derivative (RPIDD) controller is introduced for the first time for industrial temperature control applications, which is a novel alternative that has not yet been investigated in the literature. To ensure optimal performance, the parameters of the RPIDD controller are optimized using metaheuristic algorithms, including the flood optimization algorithm (FLA), reptile search algorithm (RSA), particle swarm optimization (PSO) and differential evolution (DE). A new approach is proposed which combines the quadratic interpolation optimization (QIO) algorithm with the RPIDD controller, taking advantage of the fast convergence, low computational cost and high accuracy of QIO. Comparative analyses between QIO-RPIDD, FLA-RPIDD, RSA-RPIDD, PSO-RPIDD and DE-RPIDD controller are performed by evaluating performance metrics such as transient and frequency response. The results show that QIO-RPIDD achieves superior performance, adapts quickly to different reference temperatures and performs excellently on key performance indicators. These results make the proposed QIO-RPIDD controller a promising solution for industrial temperature control and contribute to more efficient and adaptive optimization techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696469PMC
http://dx.doi.org/10.1038/s41598-024-84085-wDOI Listing

Publication Analysis

Top Keywords

temperature control
12
rpidd controller
12
quadratic interpolation
8
interpolation optimization
8
industrial temperature
8
temperature
5
optimization
5
controller
5
efficient control
4
control strategy
4

Similar Publications

Fluid flow across a Riga Plate is a specialized phenomenon studied in boundary layer flow and magnetohydrodynamic (MHD) applications. The Riga Plate is a magnetized surface used to manipulate boundary layer characteristics and control fluid flow properties. Understanding the behavior of fluid flow over a Riga Plate is critical in many applications, including aerodynamics, industrial, and heat transfer operations.

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

Comparing autonomic nervous system function in patients with functional somatic syndromes, stress-related syndromes and healthy controls.

J Psychosom Res

December 2024

REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium; Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Background: The goal of this study was to examine autonomic nervous system function by measuring heart rate (HR), heart rate variability (HRV), skin conductance levels (SCL), and peripheral skin temperature (ST) in response to and during recovery from psychosocial stressors in patients with functional somatic syndromes (FSS; fibromyalgia and/or chronic fatigue syndrome), stress-related syndromes (SRS; overstrain or burn-out), and healthy controls (HC).

Methods: Patients with FSS (n = 26), patients with SRS (n = 59), and HC (n = 30) went through a standardized psychosocial stress test consisting of a resting phase (120 s), the STROOP color word task (120 s), a mental arithmetic task (120 s) and a stress talk (120 s), each followed by a 120 s recovery period. HR, HRV, SCL, and ST were monitored continuously.

View Article and Find Full Text PDF

Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water.

J Environ Manage

January 2025

Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China. Electronic address:

The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!