Agriculture is a major contributor to global greenhouse gas emissions, highlighting the urgent need for effective carbon reduction strategies. This study presents an innovative integrated model that employs Fermatean Neutrosophic Set in conjunction with the Weighted Influence Nonlinear Gauge System and the Analytic Hierarchy Process combined with the Entropy Weight Method to assess key factors influencing agricultural carbon reduction. Our study delineates the hierarchical importance of factors influencing carbon emissions, with carbon emission reduction policy (τ4) emerging as the paramount factor, attributed a value of 0.220. The factor prioritization is ordered as τ4 > τ8 > τ3 > τ2 > τ6 > τ9 > τ1 > τ5 > τ7. Concurrently, the causality ranking, derived from the [Formula: see text] values, positions agricultural technology adoption (τ6) as the most influential factor, with a value of 0.7737, and is followed by the sequence τ6 > τ9 > τ8 > τ1 > τ5 > τ2 > 0 > τ3 > τ4 > τ7.The findings emphasize the pivotal role of sustainable agricultural management, carbon emission reduction policy, and agricultural technology adoption in mitigating emissions, and based on this, suggest some policy insights that can be used by policymakers and regulators. The proposed model serves as a robust decision-making tool for policymakers and provides a theoretical framework for developing effective agricultural carbon reduction strategies. This research advances the field by offering a novel theoretical model for complex decision-making under uncertainty, deepening the understanding of agricultural carbon reduction dynamics, and providing actionable insights for sustainable development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696615 | PMC |
http://dx.doi.org/10.1038/s41598-024-84423-y | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China. Electronic address:
In higher plants, sugars are the primary products of photosynthesis, where in CO is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant.
View Article and Find Full Text PDFSci Total Environ
January 2025
Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
The development of ecological fertilizers has become crucial in modern agriculture due to the increasing global population and diminishing arable land resources. Herein, a plant growth-promoting fertilizer (UKS) with dual functions of slow-release and water-retention was prepared by combining liquid-phase intercalation method and crosslinking gel method. The physicochemical properties of UKS were analyzed and its dissolution, slow-release, and water-retention properties were systematically evaluated.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!